Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ralph T. Mosley is active.

Publication


Featured researches published by Ralph T. Mosley.


Journal of Biological Chemistry | 1999

NOVEL PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR (PPAR) GAMMA AND PPARDELTA LIGANDS PRODUCE DISTINCT BIOLOGICAL EFFECTS

Joel P. Berger; Mark D. Leibowitz; Thomas W. Doebber; Alex Elbrecht; Bei Zhang; Gaochou Zhou; Chhabi Biswas; Catherine A. Cullinan; Nancy S. Hayes; Ying Li; Michael Tanen; John Ventre; Margaret Wu; Gregory D. Berger; Ralph T. Mosley; Robert W. Marquis; Conrad Santini; Soumya P. Sahoo; Richard L. Tolman; Roy G. Smith; David E. Moller

The peroxisome proliferator-activated receptors (PPARs) include three receptor subtypes encoded by separate genes: PPARα, PPARδ, and PPARγ. PPARγ has been implicated as a mediator of adipocyte differentiation and the mechanism by which thiazolidinedione drugs exert in vivo insulin sensitization. Here we characterized novel, non-thiazolidinedione agonists for PPARγ and PPARδ that were identified by radioligand binding assays. In transient transactivation assays these ligands were agonists of the receptors to which they bind. Protease protection studies showed that ligand binding produced specific alterations in receptor conformation. Both PPARγ and PPARδ directly interacted with a nuclear receptor co-activator (CREB-binding protein) in an agonist-dependent manner. Only the PPARγ agonists were able to promote differentiation of 3T3-L1 preadipocytes. In diabeticdb/db mice all PPARγ agonists were orally active insulin-sensitizing agents producing reductions of elevated plasma glucose and triglyceride concentrations. In contrast, selectivein vivo activation of PPARδ did not significantly affect these parameters. In vivo PPARα activation with WY-14653 resulted in reductions in elevated triglyceride levels with minimal effect on hyperglycemia. We conclude that: 1) synthetic non-thiazolidinediones can serve as ligands of PPARγ and PPARδ; 2) ligand-dependent activation of PPARδ involves an apparent conformational change and association of the receptor ligand binding domain with CREB-binding protein; 3) PPARγ activation (but not PPARδ or PPARα activation) is sufficient to potentiate preadipocyte differentiation; 4) non-thiazolidinedione PPARγ agonists improve hyperglycemia and hypertriglyceridemia in vivo; 5) although PPARα activation is sufficient to affect triglyceride metabolism, PPARδ activation does not appear to modulate glucose or triglyceride levels.


Journal of Chemical Information and Computer Sciences | 1996

CHEMICAL SIMILARITY USING PHYSIOCHEMICAL PROPERTY DESCRIPTORS

Simon K. Kearsley; Susan Sallamack; Eugene M. Fluder; Joseph D. Andose; Ralph T. Mosley; Robert P. Sheridan

Similarity searches using topological descriptors have proved extremely useful in aiding large-scale screening. We describe alternative forms of the atom pair (Carhart et al. J. Chem. Inf. Comput. Sci. 1985, 25, 64−73.) and topological torsion (Nilakantan et al. J. Chem. Inf. Comput. Sci. 1987, 27, 82−85.) descriptors that use physiochemical atom types. These types are based on binding property class, atomic log P contribution, and partial atomic charges. The new descriptors are meant to be more “fuzzy” than the original descriptors. We propose objective criteria for determining how effective one descriptor is versus another in selecting active compounds from large databases. Using these criteria, we run similarity searches over the Derwent Standard Drug File with ten typical druglike probes. The new descriptors are not as good as the original descriptors in selecting actives if one considers the average over all probes, but the new descriptors do better for several individual probes. Generally we find th...


Trends in Pharmacological Sciences | 2008

What's all the FLAP about?: 5-lipoxygenase-activating protein inhibitors for inflammatory diseases.

Jilly F. Evans; Andrew D. Ferguson; Ralph T. Mosley; John H. Hutchinson

Leukotrienes have physiological roles in innate immune responses and pathological roles in inflammatory diseases, such as asthma, allergic rhinitis and atherosclerosis. Anti-leukotriene therapy has proven benefits in the treatment of respiratory disease, either through the inhibition of leukotriene synthesis or the selective antagonism of leukotriene receptors. The first committed step in the synthesis of leukotrienes is the oxidation of arachidonic acid (AA) by 5-lipoxygenase (5-LO), and the integral membrane protein 5-lipoxygenase-activating protein (FLAP) is an essential partner of 5-LO for this process. FLAP was molecularly identified via a photoaffinity probe and an affinity gel based on MK-886, a selective leukotriene inhibitor that has no activity against broken-cell preparations of 5-LO. Several FLAP inhibitors showed efficacy in early clinical trials in asthma but were not developed commercially for unpublished reasons. Recently, the FLAP (ALOX5AP) gene has been linked to risk for myocardial infarction, stroke and restenosis, reigniting pharmaceutical interest in this target. In addition, the recent determination of the crystal structure of inhibitor-bound FLAP offers exciting potential for novel FLAP inhibitor design.


Diabetes | 2008

Selective Small-Molecule Agonists of G Protein–Coupled Receptor 40 Promote Glucose-Dependent Insulin Secretion and Reduce Blood Glucose in Mice

Carina P. Tan; Yue Feng; Yun-Ping Zhou; George J. Eiermann; Aleksandr Petrov; Changyou Zhou; Songnian Lin; Gino Salituro; Peter T. Meinke; Ralph T. Mosley; Taro E. Akiyama; Monica Einstein; Sanjeev Kumar; Joel P. Berger; Sander G. Mills; Nancy A. Thornberry; Lihu Yang; Andrew D. Howard

OBJECTIVE— Acute activation of G protein–coupled receptor 40 (GPR40) by free fatty acids (FFAs) or synthetic GPR40 agonists enhances insulin secretion. However, it is still a matter of debate whether activation of GPR40 would be beneficial for the treatment of type 2 diabetes, since chronic exposure to FFAs impairs islet function. We sought to evaluate the specific role of GPR40 in islets and its potential as a therapeutic target using compounds that specifically activate GPR40. RESEARCH DESIGN AND METHODS— We developed a series of GPR40-selective small-molecule agonists and studied their acute and chronic effects on glucose-dependent insulin secretion (GDIS) in isolated islets, as well as effects on blood glucose levels during intraperitoneal glucose tolerance tests in wild-type and GPR40 knockout mice (GPR40−/−). RESULTS— Small-molecule GPR40 agonists significantly enhanced GDIS in isolated islets and improved glucose tolerance in wild-type mice but not in GPR40−/− mice. While a 72-h exposure to FFAs in tissue culture significantly impaired GDIS in islets from both wild-type and GPR40−/− mice, similar exposure to the GPR40 agonist did not impair GDIS in islets from wild-type mice. Furthermore, the GPR40 agonist enhanced insulin secretion in perfused pancreata from neonatal streptozotocin-induced diabetic rats and improved glucose levels in mice with high-fat diet–induced obesity acutely and chronically. CONCLUSIONS— GPR40 does not mediate the chronic toxic effects of FFAs on islet function. Pharmacological activation of GPR40 may potentiate GDIS in humans and be beneficial for overall glucose control in patients with type 2 diabetes.


Tetrahedron | 1993

Isolation and structure of chaetomellic acids A and B from Chaetomella acutiseta: farnesyl pyrophosphate mimic inhibitors of ras farnesyl-protein transferase

Sheo B. Singh; Deborah L. Zink; Jerrold M. Liesch; Michael A. Goetz; Rosalind G. Jenkins; Mary Nallin-Omstead; Keith C. Silverman; Gerald F. Bills; Ralph T. Mosley; Jackson B. Gibbs; Georg Albers-Schönberg; Russell B. Lingham

Abstract Farnesyl-Protein transferase catalyses a post-translational modification of Ras that is obligatory for the cell transforming activity of this oncogene protein. The screening of natural products to identify inhibitors of this enzyme as a potential anticancer agents, has led to the isolation of two novel dicarboxylic acids, named chaetomellic acids from Chaetomella acutiseta, as potent and selective inhibitors which appear to be the first examples of nonphosphorous containing FPP mimics.


Molecular Pharmacology | 2007

The differential interactions of peroxisome proliferator-activated receptor gamma ligands with Tyr473 is a physical basis for their unique biological activities.

Monica Einstein; Taro E. Akiyama; Gino Castriota; Chuanlin F. Wang; Brian M. McKeever; Ralph T. Mosley; Joseph W. Becker; David E. Moller; Peter T. Meinke; Harold B. Wood; Joel P. Berger

Despite their proven antidiabetic efficacy, widespread use of peroxisome proliferator-activated receptor (PPAR)γ agonists has been limited by adverse cardiovascular effects. To overcome this shortcoming, selective PPARγ modulators (SPPARγMs) have been identified that have antidiabetic efficacy comparable with full agonists with improved tolerability in preclinical species. The results of structural studies support the proposition that SPPARγMs interact with PPARγ differently from full agonists, thereby providing a physical basis for their novel activities. Herein, we describe a novel PPARγ ligand, SPPARγM2. This compound was a partial agonist in a cell-based transcriptional activity assay, with diminished adipogenic activity and an attenuated gene signature in cultured human adipocytes. X-ray cocrystallography studies demonstrated that, unlike rosiglitazone, SPPARγM2 did not interact with the Tyr473 residue located within helix 12 of the ligand binding domain (LBD). Instead, SPPARγM2 was found to bind to and activate human PPARγ in which the Tyr473 residue had been mutated to alanine (hPPARγY473A), with potencies similar to those observed with the wild-type receptor (hPPARγWT). In additional studies, we found that the intrinsic binding and functional potencies of structurally distinct SPPARγMs were not diminished by the Y473A mutation, whereas those of various thiazolidinedione (TZD) and non-TZD PPARγ full agonists were reduced in a correlative manner. These results directly demonstrate the important role of Tyr473 in mediating the interaction of full agonists but not SPPARγMs with the PPARγ LBD, thereby providing a precise molecular determinant for their differing pharmacologies.


Journal of Biological Chemistry | 2000

Both Coactivator LXXLL Motif-dependent and -independent Interactions Are Required for Peroxisome Proliferator-activated Receptor γ (PPARγ) Function

Shiying Chen; Bruce A. Johnson; Ying Li; Susan D. Aster; Brian M. McKeever; Ralph T. Mosley; David E. Moller; Gaochao Zhou

Nuclear receptor activation is dependent on recruitment of coactivators, including CREB-binding protein (CBP/p300) and steroid receptor coactivator-1 (SRC-1). A three-dimensional NMR approach was used to probe the coactivator binding interface in the peroxisome proliferator-activated receptor γ (PPARγ) ligand binding domain (LBD). In the presence of a CBP peptide, peaks corresponding to 20 residues in helices 3, 4, 5, and 12 of the LBD were attenuated. Alanine mutants revealed that K301A, V315A, Y320A, L468A, and E471A were required for binding of both CBP and SRC-1 and for cell-based transcription. Several additional amino acids in helix 4 of the PPARγLBD were defective with respect to CBP recruitment, but retained relatively normal SRC-1 recruitment. Thus these amino acid residues may be important determinants of specificity for nuclear receptor LBD interactions with discrete coactivator molecules.


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery of 5-aryloxy-2,4-thiazolidinediones as potent GPR40 agonists.

Changyou Zhou; Cheng Tang; Eric Chang; Min Ge; Songnian Lin; Eric Cline; Carina P. Tan; Yue Feng; Yun-Ping Zhou; George J. Eiermann; Aleksandr Petrov; Gino Salituro; Peter T. Meinke; Ralph T. Mosley; Taro E. Akiyama; Monica Einstein; Sanjeev Kumar; Joel P. Berger; Andrew D. Howard; Nancy A. Thornberry; Sander G. Mills; Lihu Yang

Systematic structure-activity relationship (SAR) studies of a screening lead led to the discovery of a series of thiazolidinediones (TZDs) as potent GPR40 agonists. Among them, compound C demonstrated an acute mechanism-based glucose-lowering in an intraperitoneal glucose tolerance test (IPGTT) in lean mice, while no effects were observed in GPR40 knock-out mice.


Bioorganic & Medicinal Chemistry Letters | 1999

Potent, orally bioavailable somatostatin agonists: Good absorption achieved by urea backbone cyclization

Alexander Pasternak; Yanping Pan; Dominick Marino; Philip E.J. Sanderson; Ralph T. Mosley; Susan P. Rohrer; Elizabeth T. Birzin; Su-Er W. Huskey; Tom Jacks; Klaus D. Schleim; Kang Cheng; James M. Schaeffer; Arthur A. Patchett; Lihu Yang

Backbone cyclization of urea-based somatostatin agonists resulted in novel, orally bioavailable agonists. Binding assays confirmed that the resulting conformationally constrained cyclic ureas retained the potency of their acyclic counterparts. SAR studies subsequently led to highly potent analogs, selective for receptor subtype 2, and having good oral bioavailability.


Molecular Endocrinology | 2009

Molecular mechanism of action of pharmacoperone rescue of misrouted GPCR mutants: the GnRH receptor.

Jo Ann Janovick; Akshay Patny; Ralph T. Mosley; Mark T. Goulet; Michael D. Altman; Thomas S. Rush; Anda Cornea; P. Michael Conn

The human GnRH receptor (hGnRHR), a G protein-coupled receptor, is a useful model for studying pharmacological chaperones (pharmacoperones), drugs that rescue misfolded and misrouted protein mutants and restore them to function. This technique forms the basis of a therapeutic approach of rescuing mutants associated with human disease and restoring them to function. The present study relies on computational modeling, followed by site-directed mutagenesis, assessment of ligand binding, effector activation, and confocal microscopy. Our results show that two different chemical classes of pharmacoperones act to stabilize hGnRHR mutants by bridging residues D(98) and K(121). This ligand-mediated bridge serves as a surrogate for a naturally occurring and highly conserved salt bridge (E(90)-K(121)) that stabilizes the relation between transmembranes 2 and 3, which is required for passage of the receptor through the cellular quality control system and to the plasma membrane. Our model was used to reveal important pharmacophoric features, and then identify a novel chemical ligand, which was able to rescue a D(98) mutant of the hGnRHR that could not be rescued as effectively by previously known pharmacoperones.

Researchain Logo
Decentralizing Knowledge