Ram Podicheti
Indiana University Bloomington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ram Podicheti.
Plant Physiology | 2008
Roger W. Innes; Carine Ameline-Torregrosa; Tom Ashfield; Ethalinda Cannon; Steven B. Cannon; Ben Chacko; Nicolas W.G. Chen; Arnaud Couloux; Anita Dalwani; Roxanne Denny; Shweta Deshpande; Ashley N. Egan; Natasha Glover; Christian S. Hans; Stacy Howell; Dan Ilut; Scott A. Jackson; Hongshing Lai; J. A. Mammadov; Sara Martin del Campo; Michelle Metcalf; Ashley Nguyen; Majesta O'Bleness; Bernard E. Pfeil; Ram Podicheti; Milind B. Ratnaparkhe; Sylvie Samain; Iryna Sanders; Béatrice Segurens; Mireille Sévignac
The genomes of most, if not all, flowering plants have undergone whole genome duplication events during their evolution. The impact of such polyploidy events is poorly understood, as is the fate of most duplicated genes. We sequenced an approximately 1 million-bp region in soybean (Glycine max) centered on the Rpg1-b disease resistance gene and compared this region with a region duplicated 10 to 14 million years ago. These two regions were also compared with homologous regions in several related legume species (a second soybean genotype, Glycine tomentella, Phaseolus vulgaris, and Medicago truncatula), which enabled us to determine how each of the duplicated regions (homoeologues) in soybean has changed following polyploidy. The biggest change was in retroelement content, with homoeologue 2 having expanded to 3-fold the size of homoeologue 1. Despite this accumulation of retroelements, over 77% of the duplicated low-copy genes have been retained in the same order and appear to be functional. This finding contrasts with recent analyses of the maize (Zea mays) genome, in which only about one-third of duplicated genes appear to have been retained over a similar time period. Fluorescent in situ hybridization revealed that the homoeologue 2 region is located very near a centromere. Thus, pericentromeric localization, per se, does not result in a high rate of gene inactivation, despite greatly accelerated retrotransposon accumulation. In contrast to low-copy genes, nucleotide-binding-leucine-rich repeat disease resistance gene clusters have undergone dramatic species/homoeologue-specific duplications and losses, with some evidence for partitioning of subfamilies between homoeologues.
Bioinformatics | 2010
Chris Hemmerich; Aaron Buechlein; Ram Podicheti; Kashi Vishwanath Revanna; Qunfeng Dong
SUMMARY Ergatis is a flexible workflow management system for designing and executing complex bioinformatics pipelines. However, its complexity restricts its usage to only highly skilled bioinformaticians. We have developed a web-based prokaryotic genome annotation server, Integrative Services for Genomics Analysis (ISGA), which builds upon the Ergatis workflow system, integrates other dynamic analysis tools and provides intuitive web interfaces for biologists to customize and execute their own annotation pipelines. ISGA is designed to be installed at genomics core facilities and be used directly by biologists. AVAILABILITY ISGA is accessible at http://isga.cgb.indiana.edu/ and the system is also freely available for local installation.
Genome Biology | 2013
Juan Carlos Motamayor; Keithanne Mockaitis; Jeremy Schmutz; Niina Haiminen; Donald Livingstone; Omar E. Cornejo; Seth D. Findley; Ping Zheng; Filippo Utro; Stefan Royaert; Christopher A. Saski; Jerry Jenkins; Ram Podicheti; Meixia Zhao; Brian E. Scheffler; Joseph C Stack; Frank Alex Feltus; Guiliana Mustiga; Freddy Amores; Wilbert Phillips; Jean Philippe Marelli; Gregory D. May; Howard Shapiro; Jianxin Ma; Carlos Bustamante; Raymond J. Schnell; Dorrie Main; Don Gilbert; Laxmi Parida; David N. Kuhn
BackgroundTheobroma cacao L. cultivar Matina 1-6 belongs to the most cultivated cacao type. The availability of its genome sequence and methods for identifying genes responsible for important cacao traits will aid cacao researchers and breeders.ResultsWe describe the sequencing and assembly of the genome of Theobroma cacao L. cultivar Matina1-6. The genome of the Matina 1-6 cultivar is 445 Mbp, which is significantly larger than a sequenced Criollo cultivar, and more typical of other cultivars. The chromosome-scale assembly, version 1.1, contains 711 scaffolds covering 346.0 Mbp, with a contig N50 of 84.4 kbp, a scaffold N50 of 34.4 Mbp, and an evidence-based gene set of 29,408 loci. Version 1.1 has 10x the scaffold N50 and 4x the contig N50 as Criollo, and includes 111 Mb more anchored sequence. The version 1.1 assembly has 4.4% gap sequence, while Criollo has 10.9%. Through a combination of haplotype, association mapping and gene expression analyses, we leverage this robust reference genome to identify a promising candidate gene responsible for pod color variation. We demonstrate that green/red pod color in cacao is likely regulated by the R2R3 MYB transcription factor TcMYB113, homologs of which determine pigmentation in Rosaceae, Solanaceae, and Brassicaceae. One SNP within the target site for a highly conserved trans-acting siRNA in dicots, found within TcMYB113, seems to affect transcript levels of this gene and therefore pod color variation.ConclusionsWe report a high-quality sequence and annotation of Theobroma cacao L. and demonstrate its utility in identifying candidate genes regulating traits.
eLife | 2015
Todd Blevins; Ram Podicheti; Vibhor Mishra; Michelle Marasco; Jing Wang; Douglas B. Rusch; Haixu Tang
In Arabidopsis thaliana, abundant 24 nucleotide small interfering RNAs (24 nt siRNA) guide the cytosine methylation and silencing of transposons and a subset of genes. 24 nt siRNA biogenesis requires nuclear RNA polymerase IV (Pol IV), RNA-dependent RNA polymerase 2 (RDR2) and DICER-like 3 (DCL3). However, siRNA precursors are mostly undefined. We identified Pol IV and RDR2-dependent RNAs (P4R2 RNAs) that accumulate in dcl3 mutants and are diced into 24 nt RNAs by DCL3 in vitro. P4R2 RNAs are mostly 26-45 nt and initiate with a purine adjacent to a pyrimidine, characteristics shared by Pol IV transcripts generated in vitro. RDR2 terminal transferase activity, also demonstrated in vitro, may account for occasional non-templated nucleotides at P4R2 RNA 3’ termini. The 24 nt siRNAs primarily correspond to the 5’ or 3’ ends of P4R2 RNAs, suggesting a model whereby siRNAs are generated from either end of P4R2 duplexes by single dicing events. DOI: http://dx.doi.org/10.7554/eLife.09591.001
Molecular Cell | 2014
Todd Blevins; Frédéric Pontvianne; Ross Cocklin; Ram Podicheti; Chinmayi Chandrasekhara; Satwica Yerneni; Chris Braun; Brandon Lee; Doug Rusch; Keithanne Mockaitis; Haixu Tang
In Arabidopsis, multisubunit RNA polymerases IV and V orchestrate RNA-directed DNA methylation (RdDM) and transcriptional silencing, but what identifies the loci to be silenced is unclear. We show that heritable silent locus identity at a specific subset of RdDM targets requires HISTONE DEACETYLASE 6 (HDA6) acting upstream of Pol IV recruitment and siRNA biogenesis. At these loci, epigenetic memory conferring silent locus identity is erased in hda6 mutants such that restoration of HDA6 activity cannot restore siRNA biogenesis or silencing. Silent locus identity is similarly lost in mutants for the cytosine maintenance methyltransferase, MET1. By contrast, pol IV or pol V mutants disrupt silencing without erasing silent locus identity, allowing restoration of Pol IV or Pol V function to restore silencing. Collectively, these observations indicate that silent locus specification and silencing are separable steps that together account for epigenetic inheritance of the silenced state.
Plant Physiology | 2008
Adam Wawrzynski; Tom Ashfield; Nicolas W.G. Chen; J. A. Mammadov; Ashley Nguyen; Ram Podicheti; Steven B. Cannon; Vincent Thareau; Carine Ameline-Torregrosa; Ethalinda Cannon; Ben Chacko; Arnaud Couloux; Anita Dalwani; Roxanne Denny; Shweta Deshpande; Ashley N. Egan; Natasha Glover; Stacy Howell; Dan Ilut; Hongshing Lai; Sara Martin del Campo; Michelle Metcalf; Majesta O'Bleness; Bernard E. Pfeil; Milind B. Ratnaparkhe; Sylvie Samain; Iryna Sanders; Béatrice Segurens; Mireille Sévignac; Sue Sherman-Broyles
Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean (Glycine max). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella, a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and Phaseolus. The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated.
Plant Physiology | 2012
Tom Ashfield; Ashley N. Egan; Bernard E. Pfeil; Nicolas W.G. Chen; Ram Podicheti; Milind B. Ratnaparkhe; Carine Ameline-Torregrosa; Roxanne Denny; Steven B. Cannon; Jeff J. Doyle; Valérie Geffroy; Bruce A. Roe; M. A. Saghai Maroof; Nevin D. Young; Roger W. Innes
We used a comparative genomics approach to investigate the evolution of a complex nucleotide-binding (NB)-leucine-rich repeat (LRR) gene cluster found in soybean (Glycine max) and common bean (Phaseolus vulgaris) that is associated with several disease resistance (R) genes of known function, including Rpg1b (for Resistance to Pseudomonas glycinea1b), an R gene effective against specific races of bacterial blight. Analysis of domains revealed that the amino-terminal coiled-coil (CC) domain, central nucleotide-binding domain (NB-ARC [for APAF1, Resistance genes, and CED4]), and carboxyl-terminal LRR domain have undergone distinct evolutionary paths. Sequence exchanges within the NB-ARC domain were rare. In contrast, interparalogue exchanges involving the CC and LRR domains were common, consistent with both of these regions coevolving with pathogens. Residues under positive selection were overrepresented within the predicted solvent-exposed face of the LRR domain, although several also were detected within the CC and NB-ARC domains. Superimposition of these latter residues onto predicted tertiary structures revealed that the majority are located on the surface, suggestive of a role in interactions with other domains or proteins. Following polyploidy in the Glycine lineage, NB-LRR genes have been preferentially lost from one of the duplicated chromosomes (homeologues found in soybean), and there has been partitioning of NB-LRR clades between the two homeologues. The single orthologous region in common bean contains approximately the same number of paralogues as found in the two soybean homeologues combined. We conclude that while polyploidization in Glycine has not driven a stable increase in family size for NB-LRR genes, it has generated two recombinationally isolated clusters, one of which appears to be in the process of decay.
BMC Genomics | 2012
Mark P. Peterson; Danielle J. Whittaker; Shruthi Ambreth; Suhas Sureshchandra; Aaron Buechlein; Ram Podicheti; Jeong Hyeon Choi; Zhao Lai; Keithanne Mockatis; John K. Colbourne; Haixu Tang; Ellen D. Ketterson
BackgroundThough genomic-level data are becoming widely available, many of the metazoan species sequenced are laboratory systems whose natural history is not well documented. In contrast, the wide array of species with very well-characterized natural history have, until recently, lacked genomics tools. It is now possible to address significant evolutionary genomics questions by applying high-throughput sequencing to discover the majority of genes for ecologically tractable species, and by subsequently developing microarray platforms from which to investigate gene regulatory networks that function in natural systems. We used GS-FLX Titanium Sequencing (Roche/454-Sequencing) of two normalized libraries of pooled RNA samples to characterize a transcriptome of the dark-eyed junco (Junco hyemalis), a North American sparrow that is a classically studied species in the fields of photoperiodism, speciation, and hormone-mediated behavior.ResultsFrom a broad pool of RNA sampled from tissues throughout the body of a male and a female junco, we sequenced a total of 434 million nucleotides from 1.17 million reads that were assembled de novo into 31,379 putative transcripts representing 22,765 gene sets covering 35.8 million nucleotides with 12-fold average depth of coverage. Annotation of roughly half of the putative genes was accomplished using sequence similarity, and expression was confirmed for the majority with a preliminary microarray analysis. Of 716 core bilaterian genes, 646 (90 %) were recovered within our characterized gene set. Gene Ontology, orthoDB orthology groups, and KEGG Pathway annotation provide further functional information about the sequences, and 25,781 potential SNPs were identified.ConclusionsThe extensive sequence information returned by this effort adds to the growing store of genomic data on diverse species. The extent of coverage and annotation achieved and confirmation of expression, show that transcriptome sequencing provides useful information for ecological model systems that have historically lacked genomic tools. The junco-specific microarray developed here is allowing investigations of gene expression responses to environmental and hormonal manipulations – extending the historic work on natural history and hormone-mediated phenotypes in this system.
BMC Plant Biology | 2015
Aruna Kilaru; Xia Cao; Parker Dabbs; Ha-Jung Sung; Md. Mahbubur Rahman; Nicholas Thrower; Greg Zynda; Ram Podicheti; Enrique Ibarra-Laclette; Luis Herrera-Estrella; Keithanne Mockaitis; John B. Ohlrogge
BackgroundThe mechanism by which plants synthesize and store high amounts of triacylglycerols (TAG) in tissues other than seeds is not well understood. The comprehension of controls for carbon partitioning and oil accumulation in nonseed tissues is essential to generate oil-rich biomass in perennial bioenergy crops. Persea americana (avocado), a basal angiosperm with unique features that are ancestral to most flowering plants, stores ~ 70 % TAG per dry weight in its mesocarp, a nonseed tissue. Transcriptome analyses of select pathways, from generation of pyruvate and leading up to TAG accumulation, in mesocarp tissues of avocado was conducted and compared with that of oil-rich monocot (oil palm) and dicot (rapeseed and castor) tissues to identify tissue- and species-specific regulation and biosynthesis of TAG in plants.ResultsRNA-Seq analyses of select lipid metabolic pathways of avocado mesocarp revealed patterns similar to that of other oil-rich species. However, only some predominant orthologs of the fatty acid biosynthetic pathway genes in this basal angiosperm were similar to those of monocots and dicots. The accumulation of TAG, rich in oleic acid, was associated with higher transcript levels for a putative stearoyl-ACP desaturase and endoplasmic reticulum (ER)-associated acyl-CoA synthetases, during fruit development. Gene expression levels for enzymes involved in terminal steps to TAG biosynthesis in the ER further indicated that both acyl-CoA-dependent and -independent mechanisms might play a role in TAG assembly, depending on the developmental stage of the fruit. Furthermore, in addition to the expression of an ortholog of WRINKLED1 (WRI1), a regulator of fatty acid biosynthesis, high transcript levels for WRI2-like and WRI3-like suggest a role for additional transcription factors in nonseed oil accumulation. Plastid pyruvate necessary for fatty acid synthesis is likely driven by the upregulation of genes involved in glycolysis and transport of its intermediates. Together, a comparative transcriptome analyses for storage oil biosynthesis in diverse plants and tissues suggested that several distinct and conserved features in this basal angiosperm species might contribute towards its rich TAG content.ConclusionsOur work represents a comprehensive transcriptome resource for a basal angiosperm species and provides insight into their lipid metabolism in mesocarp tissues. Furthermore, comparison of the transcriptome of oil-rich mesocarp of avocado, with oil-rich seed and nonseed tissues of monocot and dicot species, revealed lipid gene orthologs that are highly conserved during evolution. The orthologs that are distinctively expressed in oil-rich mesocarp tissues of this basal angiosperm, such as WRI2, ER-associated acyl-CoA synthetases, and lipid-droplet associated proteins were also identified. This study provides a foundation for future investigations to increase oil-content and has implications for metabolic engineering to enhance storage oil content in nonseed tissues of diverse species.
Scientific Data | 2017
Luisa Orsini; Donald L. Gilbert; Ram Podicheti; Mieke Jansen; James B. Brown; Omid Shams Solari; Katina I. Spanier; John K. Colbourne; Douglas Rush; Ellen Decaestecker; Jana Asselman; Karel A.C. De Schamphelaere; Dieter Ebert; Christoph R. Haag; Jouni Kvist; Christian Laforsch; Adam Petrusek; Andrew P. Beckerman; Tom J. Little; Anurag Chaturvedi; Michael E. Pfrender; Luc De Meester; Mikko J. Frilander
The full exploration of gene-environment interactions requires model organisms with well-characterized ecological interactions in their natural environment, manipulability in the laboratory and genomic tools. The waterflea Daphnia magna is an established ecological and toxicological model species, central to the food webs of freshwater lentic habitats and sentinel for water quality. Its tractability and cyclic parthenogenetic life-cycle are ideal to investigate links between genes and the environment. Capitalizing on this unique model system, the STRESSFLEA consortium generated a comprehensive RNA-Seq data set by exposing two inbred genotypes of D. magna and a recombinant cross of these genotypes to a range of environmental perturbations. Gene models were constructed from the transcriptome data and mapped onto the draft genome of D. magna using EvidentialGene. The transcriptome data generated here, together with the available draft genome sequence of D. magna and a high-density genetic map will be a key asset for future investigations in environmental genomics.