Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rama B. Bhat is active.

Publication


Featured researches published by Rama B. Bhat.


Vehicle System Dynamics | 2009

New model and simulation of Macpherson suspension system for ride control applications

Mohammad Saber Fallah; Rama B. Bhat; Wen-Fang Xie

The main purpose of this paper is to propose a new nonlinear model of the Macpherson strut suspension system for ride control applications. The model includes the vertical acceleration of the sprung mass and incorporates the suspension linkage kinematics. This two-degree-of-freedom (DOF) model not only provides a more accurate representation of the Macpherson suspension system for control applications in order to improve the ride quality, but also facilitates evaluation of the suspension kinematic parameters, such as camber, caster and king-pin angles as well as track alterations on the ride vibrations. The performances of the nonlinear and linearised models are investigated and compared with those of the conventional model. Besides, it is shown that the semi-active force improves the ride quality better than active force, while the opposite is true in terms of improving the performance of the kinematic parameters. The results of variations of the kinematic parameters based on the linear model subject to road disturbances are compared with those of a virtual prototype of Macpherson suspension in ADAMS software. The analytical results in both cases are shown to agree with each other.


Journal of Aircraft | 2008

Robust Model Predictive Control of Shimmy Vibration in Aircraft Landing Gears

Mohammad Saber Fallah; S. H. Long; Wen-Fang Xie; Rama B. Bhat

Shimmy vibration is one of the major concerns in the aircraft landing gear design. In this paper, the influence of structural parameters on the shimmy dynamics is analyzed based on a nonlinear dynamical model. A computationally efficient robust model predictive control law is formulated for a linear parameter varying system with guaranteed closed-loop stability. Moreover, an attempt is made to apply the proposed robust model predictive control strategy to suppress the shimmy during the taxiing and landing of an aircraft. Compared with two current robust model predictive controls, the proposed shimmy controller can effectively suppress the shimmy with more efficient computation. To verify the efficiency of the proposed algorithm, the simulation results are presented and discussed. Nomenclature A,B,C = discrete state-space matrices Ac,Bc,Cc = continuous state-space matrices Aj,Bj = discrete state-space matrices ofjth vertex a = half contact length


46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference | 2005

Dynamic Testing of Structures Using Scale Models

Anshuman Jha; Ramin Sedaghati; Rama B. Bhat

Dynamic testing is very useful in the design and development of products and systems. Although designers employ most powerful analysis tools, using the most elaborate electronic computers, actual testing is required in order to ensure the proper functioning of the designed system. For the structures that are extremely small such as the Micro Electromechanical Systems (MEMS) or that are very large such as civil and aerospace structures complex dynamic tests can be carried out on a replica of the system, called the model , made to larger or smaller scale, respectively, for reasons of economy, convenience and saving in time. Similitude theory is employed to develop the necessary similarity conditions (scaling laws) for dynamic testing of scaled structures. Scaling laws provide relationship between a full-scale structure and its small scale model, and can be used to predict the response of the prototype by performing dynamic testing on inexpensive model conveniently. Such scaled models have been extensively used in wind tunnel testing of large structures such as automobiles, buildings and aircrafts structures. The difficulty of making completely similar small scale models often leads to certain types of relaxations and distortions from exact duplication of the prototype (partial similarity). Both complete and partial similarities are discussed. These scaling laws are then validated both by carrying out finite element analysis using ANSYS 7.1, and by performing experiments in the laboratory for a simple structures. The above methodology has also been applied to the design validation of a shipboard monitor console. The console is required to isolate the monitor from the shock and vibration inputs and ensure its proper functioning. The shipboard console and its scale model have been investigated for their dynamic response subjected to sinusoidal and shock loads and a good correlation has been found between the prototype and the model.


Advances in Acoustics and Vibration | 2010

Frequency Equations for the In-Plane Vibration of Circular Annular Disks

S. Bashmal; Rama B. Bhat; S. Rakheja

This paper deals with the in-plane vibration of circular annular disks under combinations of different boundary conditions at the inner and outer edges. The in-plane free vibration of an elastic and isotropic disk is studied on the basis of the two-dimensional linear plane stress theory of elasticity. The exact solution of the in-plane equation of equilibrium of annular disk is attainable, in terms of Bessel functions, for uniform boundary conditions. The frequency equations for different modes can be obtained from the general solutions by applying the appropriate boundary conditions at the inner and outer edges. The presented frequency equations provide the frequency parameters for the required number of modes for a wide range of radius ratios and Poissons ratios of annular disks under clamped, free, or flexible boundary conditions. Simplified forms of frequency equations are presented for solid disks and axisymmetric modes of annular disks. Frequency parameters are computed and compared with those available in literature. The frequency equations can be used as a reference to assess the accuracy of approximate methods.


Shock and Vibration | 2011

Clustered natural frequencies in multi-span beams with constrained characteristic functions

Khodabakhsh Saeedi; Rama B. Bhat

A study of the natural frequencies and mode shapes of a multi-span beam is carried out by introducing constrained beam characteristic functions. The conventional method used for the dynamic analysis of such a beam is to consider span-wise characteristic function solution and then to solve it by using compatibility conditions such as the continuity in the a slope and bending moment at the intermediate supports and boundary conditions at the ends. In the method proposed here, the matrix size is reduced and, if the support conditions are symmetric about the midpoint, the symmetry and anti-symmetry conditions at the midpoint can be conveniently exploited for computational economy. The natural frequencies occur in clusters, each one containing the number of natural frequencies equal to the number of spans. The results are presented and discussed.


ASME 2006 International Mechanical Engineering Congress and Exposition | 2006

Grasping Contact Analysis of Viscoelastic Materials With Applications in Minimally Invasive Surgery

Ali Bonakdar; Javad Dargahi; Rama B. Bhat

This paper presents a method to determine the contact force and pressure on the surface of viscoelastic objects grasped by an endoscopic grasper, used in Minimally Invasive Surgery (MIS). Normally, an endoscopic grasper is corrugated (teeth-like) in order to grasp slippery tissues. It is highly important to avoid damage to the tissues during grasping and manipulation in endoscopic surgery. Therefore, it is essential to determine the exact contact force on the surface of the tissue. To this end, initially a comprehensive closed form analysis of grasping contact force and pressure on elastic and particularly viscoelastic materials which have similar behavior as that of biological tissues is studied. The behavior of a rigid grasper with wedge-like teeth, when pressed into a delayed elasticity material is being examined. Initially, a single wedge penetrating into a solid is studied and then is extended to the grasper. The elastic wedge indentation is the basis of this study and the effects of time are included in the equations by considering the corresponding integral operator from viscoelastic stress-stain relations. Under the action of a constant normal load, the penetration of the indenter and the contact area will change. In this research, the variation of the contact area with time and the grasping contact force is studied. The results of this study which provides a closed form expression for grasping contact force and contact area are compared with those from elastic analysis.Copyright


Sensor Review | 2012

Wireless sensing using acoustic signals for measurement of dynamic pressure and temperature in harsh environment

Alfin Leo; Gino Rinaldi; Ion Stiharu; Rama B. Bhat

Purpose – It is currently difficult to measure temperature and pressure in harsh environments. Such measurements are limited by either the ability of the sensing element or the associated electrical wiring to withstand the operating environment. This is unfortunate as temperature and pressure are important measurands in various engineering structures as they provide critical information on the operating condition of the structure. Hence, there is a need to address this shortcoming. Such a sensor in place would enhance the operating efficiency thereby reducing the pollution burden and its impact on the environment. The purpose of this paper is to present theoretical and preliminary experimental results for a co‐integrated pressure and temperature sensor for harsh environments.Design/methodology/approach – This work describes a co‐integrated pressure‐temperature wireless sensing scheme. The approach presented herein provides the possibility of measuring dynamic pressure and temperature within an enclosed vo...


SAE 2010 World Congress & Exhibition | 2010

Semi-active ride comfort evaluation of heavy vehicles using a hybrid dynamic model

Khodabakhsh Saeedi; Mohammad Saber Fallah; Rama B. Bhat

In this paper, the driver ride comfort in a heavy vehicle (city bus) is studied under the sky-hook semi-active damping force policy. A new hybrid dynamic model composed of a continuous system and a discrete system are integrated in the current work. The chassis of the vehicle is assumed as the continuous beam supported on the discrete suspension springs and dampers. The driver and the seat are also considered as a discrete vibrating system. The dynamic equations are solved by using the assumed mode method, where the mode shapes of a free-free beam have been employed. The results of the semi-active system are compared with those of the passive one through simulations. The results indicate that the new hybrid dynamic model represents more degrees-of-freedom of the system for driver ride analysis compared to the discrete model. In addition, the results show that the semi-active system has a superior performance in terms of the ride comfort. Copyright


Advances in Acoustics and Vibration | 2010

Identification of Motive Forces on the Whole Body System during Walking

Raghdan J. AlKhoury; Suraj Joshi; Rama B. Bhat; Shiping Ma

Motive forces by muscles are applied to different parts of the human body in a periodic fashion when walking at a uniform rate. In this study, the whole human body is modeled as a multidegree of freedom (MDOF) system with seven degrees of freedom. In view of the changing contact conditions with the ground due to alternating feet movements, the system under study is considered piecewise time invariant for each half-period when one foot is in contact with the ground. Forces transmitted from the body to the ground while walking at a normal pace are experimentally measured and numerically simulated. Fourth-order Runge-Kutta method is employed to numerically simulate the forces acting on different masses of the body. An optimization problem is formulated with the squared difference between the measured and simulated forces transmitted to the ground as the objective function, and the motive forces on the body masses as the design variables to solve.


Advances in Acoustics and Vibration | 2009

Analytical and Experimental Study Using Output-Only Modal Testing for On-Orbit Satellite Appendages

Mashiul Alam; Ramin Sedaghati; Yvan Soucy; Rama B. Bhat

Output-only modal testing is an effective technique to identify the modal parameters of structural systems under ambient or operational conditions and has potential applications in civil, mechanical, and aerospace engineering. It may effectively be used for model validation, model updating, quality control, and health monitoring through the determination of modal characteristics of the structures. This approach to modal testing has great potential for ground and on-orbit modal testing of space hardware, especially for flexible structures such as membrane payloads where the operating and ambient excitations, such as firing of AC thrusters and ambient thermal shock, are difficult or impossible to measure. The main objective of this work is to conduct analytical and experimental study on output-only modal testing and to demonstrate its potential application to effectively extract modal parameters of an on-orbit satellite appendage.

Collaboration


Dive into the Rama B. Bhat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Bashmal

King Fahd University of Petroleum and Minerals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge