Ramakrishna Chakravarthi
University of Aberdeen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ramakrishna Chakravarthi.
Journal of Vision | 2007
Ramakrishna Chakravarthi; Patrick Cavanagh
If the target in a crowding display differs from the distracters in its contrast polarity, the extent of crowding is reduced compared to the condition where all the elements in the display have the same polarity. In Experiment 1, we test the temporal properties of this polarity advantage by reversing the contrast of the target and flankers at four frequencies between 2 and 15 Hz. In the same polarity condition, target and distracters were all white in one frame but all black in the next. In the opposite polarity condition, the target was white and distracters black in one frame and all reversed in the next frame. Less crowding was seen for the opposite polarity condition at lower frequencies, but this advantage disappeared at 7.5 Hz and higher frequencies. In Experiment 2, we test whether this result can be explained by lateral masking, using a display that matched the crowding configuration. Lateral masking did not exhibit a polarity advantage at any frequency. Hence, the polarity advantage in crowding, and its loss at 6-8 Hz, cannot be attributed to lateral masking. It is known that attention has a coarse temporal resolution (6-8 Hz). The findings of this study suggest a role for attention in crowding, as opposed to low-level mechanisms like lateral masking.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Ramakrishna Chakravarthi; Rufin VanRullen
As the visual world changes, its representation in our consciousness must be constantly updated. Given that the external changes are continuous, it appears plausible that conscious updating is continuous as well. Alternatively, this updating could be periodic, if, for example, its implementation at the neural level relies on oscillatory activity. The flash-lag illusion, where a briefly presented flash in the vicinity of a moving object is misperceived to lag behind the moving object, is a useful tool for studying the dynamics of conscious updating. Here, we show that the trial-by-trial variability in updating, measured by the flash-lag effect (FLE), is highly correlated with the phase of spontaneous EEG oscillations in occipital (5–10 Hz) and frontocentral (12–20 Hz) cortices just around the reference event (flash onset). Further, the periodicity in each region independently influences the updating process, suggesting a two-stage periodic mechanism. We conclude that conscious updating is not continuous; rather, it follows a rhythmic pattern.
Vision Research | 2009
Ramakrishna Chakravarthi; Patrick Cavanagh
Thirty randomly oriented Ts were presented in a circle around fixation at an eccentricity of 11 degrees such that each T was crowded by its neighbors. Two locations within the same hemifield (unilateral condition) or one location in each hemifield (bilateral condition) were precued for subsequent probing. Observers were then asked to report the orientation of a target T at one of these locations. A bilateral field advantage was found: target identification was better when the two precued targets were in different hemifields than when they were within the same hemifield. This bilateral advantage was absent when only targets were presented, without any distracters. Further controls showed that this advantage could not be attributed to differences between horizontal and vertical target alignments or to visual field anisotropies. A similar bilateral advantage has been reported for multiple object tracking (Alvarez, G. A., & Cavanagh, P. (2005). Independent resources for attentional tracking in the left and right visual fields. Psychological Science 16(8), 637-643) and other attentional tasks. Our results suggest that crowding also demonstrates separate attentional resources in the left and right hemifields. There was a cost to attending to two targets presented unilaterally over attending to a single target. However, this cost was reduced when the two crowded targets were in separate hemifields.
Attention Perception & Psychophysics | 2012
Jeremy Freeman; Ramakrishna Chakravarthi; Denis G. Pelli
Unless we fixate directly on it, it is hard to see an object among other objects. This breakdown in object recognition, called crowding, severely limits peripheral vision. The effect is more severe when objects are more similar. When observers mistake the identity of a target among flanker objects, they often report a flanker. Many have taken these flanker reports as evidence of internal substitution of the target by a flanker. Here, we ask observers to identify a target letter presented in between one similar and one dissimilar flanker letter. Simple substitution takes in only one letter, which is often the target but, by unwitting mistake, is sometimes a flanker. The opposite of substitution is pooling, which takes in more than one letter. Having taken only one letter, the substitution process knows only its identity, not its similarity to the target. Thus, it must report similar and dissimilar flankers equally often. Contrary to this prediction, the similar flanker is reported much more often than the dissimilar flanker, showing that rampant flanker substitution cannot account for most flanker reports. Mixture modeling shows that simple substitution can account for, at most, about half the trials. Pooling and nonpooling (simple substitution) together include all possible models of crowding. When observers are asked to identify a crowded object, at least half of their reports are pooled, based on a combination of information from target and flankers, rather than being based on a single letter.
Journal of Vision | 2014
Sarah Rosen; Ramakrishna Chakravarthi; Denis G. Pelli
Crowding is the inability to identify an object among flankers in the periphery. It is due to inappropriate incorporation of features from flanking objects in perception of the target. Crowding is characterized by measuring critical spacing, the minimum distance needed between a target and flankers to allow recognition. The existing Bouma law states that, at a given point and direction in the visual field, critical spacing, measured from the center of a target object to the center of a similar flanking object, is the same for all objects (Pelli & Tillman, 2008). Because flipping an object about its center preserves its center-to-center spacing to other objects, according to the Bouma law, crowding should be unaffected. However, because crowding is a result of feature combination, the location of features within an object might matter. In a series of experiments, we find that critical spacing is affected by the location of features within the flanker. For some flankers, a flip greatly reduces crowding even though it maintains target-flanker spacing and similarity. Our results suggest that the existing Bouma law applies to simple one-part objects, such as a single roman letter or a Gabor patch. Many objects consist of multiple parts; for example, a word is composed of multiple letters that crowd each other. To cope with such complex objects, we revise the Bouma law to say that critical spacing is equal across parts, rather than objects. This accounts for old and new findings.
Journal of Vision | 2014
Josephine Reuther; Ramakrishna Chakravarthi
Visual crowding is generally thought to affect recognition mostly or only at the level of feature combination. Calling this assertion into question, recent studies have shown that if a target object and its flankers belong to different categories crowding is weaker than if they belong to the same category. Nevertheless, these results can be explained in terms of featural differences between categories. The current study tests if category-level (i.e., high-level) interference in crowding occurs when featural differences are controlled for. First, replicating previous results, we found lower critical spacing for targets and flankers belonging to different categories. Second, we observed the same, albeit weaker, category-specific effect when objects in both categories had the exact same feature set, suggesting that category-specific effects persist even when featural differences are fully controlled for. Third, we manipulated the semantic content of the flankers while keeping their feature set constant, by using upright or rotated objects, and found that meaning modulated crowding. An exclusively feature-based account of crowding would predict no differences due to such changes in meaning. We conclude that crowding results from not only the well-documented feature-level interactions but also additional interactions at a level where objects are grouped by meaning.
Frontiers in Human Neuroscience | 2014
Marieke K. van Vugt; Ramakrishna Chakravarthi; Jean-Philippe Lachaux
Working memory (WM) is central to human cognition as it allows information to be kept online over brief periods of time and facilitates its usage in cognitive operations (Luck and Vogel, 2013). How this information maintenance actually is implemented is still a matter of debate. Several independent theories of WM, derived, respectively, from behavioral studies and neural considerations, advance the idea that items in WM decay over time and must be periodically reactivated. In this proposal, we show how recent data from intracranial EEG and attention research naturally leads to a simple model of such reactivation in the case of sensory memories. Specifically, in our model the amplitude of high-frequency activity (>50 Hz, in the gamma-band) underlies the representation of items in high-level visual areas. This activity decreases to noise-levels within 500 ms, unless it is reactivated. We propose that top-down attention, which targets multiple sensory items in a cyclical or rhythmic fashion at around 6–10 Hz, reactivates these decaying gamma-band representations. Therefore, working memory capacity is essentially the number of representations that can simultaneously be kept active by a rhythmically sampling attentional spotlight given the known decay rate. Since attention samples at 6–10 Hz, the predicted WM capacity is 3–5 items, in agreement with empirical findings.
Applied Neuropsychology | 2016
Silvana Maria Lopes da Costa; Óscar F. Gonçalves; John DeLuca; Nancy D. Chiaravalloti; Ramakrishna Chakravarthi; Jorge Almeida
Although the integrity of the visual system is often affected in multiple sclerosis (MS), the potential relationship between the temporal dynamics of visual processing and performance on neuropsychological tests assessing processing speed (PS) remains relatively unexplored. Here, we test if a PS deficit is related to abnormalities within the visual system, rather than impaired higher-level cognitive function. Two groups of participants with MS (1 group with PS deficits and another without) and a healthy control group, matched for age and education, were included. To explore the temporal dynamics of visual processing, we used 2 psychophysical paradigms: attention enhancement/prioritization and rapid serial visual presentation. Visual PS deficits were associated with a decreased capability to detect visual stimuli and a higher limitation in visual temporal-processing capacity. These results suggest that a latent sensorial temporal limitation of the visual system is significantly associated to PS deficits in MS.
Visual Cognition | 2017
Josephine Reuther; Ramakrishna Chakravarthi
ABSTRACT The tendency to prioritize information related to the self (or socially salient information) has been established for several cognitive tasks. However, earlier studies on this question suffered from confounds such as familiarity and intimacy. Recently, a series of studies overcame this limitation using newly learnt associations between geometric shapes and identities. Results from these studies have been argued to show that self-prioritization affects perceptual processing. In two studies, we replicated and extended the original shape-identity association paradigm to test an alternative hypothesis that self-prioritization does not affect perceptual processes but arises from potential memory differences introduced during the formation of associations. We found that induced memory differences lead to response patterns similar to those that have been attributed to changes in the perceptual domain. However, even extended learning undertaken to equate memory for various identity-based associations did not eliminate the effects of self-prioritization, leaving the question open if the differences are cognitive or perceptual in nature. The current evidence can be explained both in terms of memory differences and perceptual effects. Hence, we strongly recommend that the existence of perceptual effects of self-prioritization should be investigated directly rather than through changes in reaction times in match–non-match tasks.
Scientific Reports | 2016
Benjamin J. Jennings; Konstantinos Tsattalios; Ramakrishna Chakravarthi; Jasna Martinovic
The visual system processes objects embedded in complex scenes that vary in both luminance and colour. In such scenes, colour contributes to the segmentation of objects from backgrounds, but does it also affect perceptual organisation of object contours which are already defined by luminance signals, or are these processes unaffected by colour’s presence? We investigated if luminance and chromatic signals comparably sustain processing of objects embedded in backgrounds, by varying contrast along the luminance dimension and along the two cone-opponent colour directions. In the first experiment thresholds for object/non-object discrimination of Gaborised shapes were obtained in the presence and absence of background clutter. Contrast of the component Gabors was modulated along single colour/luminance dimensions or co-modulated along multiple dimensions simultaneously. Background clutter elevated discrimination thresholds only for combined S-(L + M) and L + M signals. The second experiment replicated and extended this finding by demonstrating that the effect was dependent on the presence of relatively high S-(L + M) contrast. These results indicate that S-(L + M) signals impair spatial vision when combined with luminance. Since S-(L + M) signals are characterised by relatively large receptive fields, this is likely to be due to an increase in the size of the integration field over which contour-defining information is summed.