Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raman Mahadevan Iyer is active.

Publication


Featured researches published by Raman Mahadevan Iyer.


Nature | 2010

Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF -mutant melanoma

Gideon Bollag; Peter Hirth; James H. Tsai; Jiazhong Zhang; Prabha N. Ibrahim; Hanna Cho; Wayne Spevak; Chao Zhang; Ying Zhang; Gaston Habets; Elizabeth A. Burton; Bernice Wong; Garson Tsang; Brian L. West; Ben Powell; Rafe Shellooe; Adhirai Marimuthu; Hoa Nguyen; Kam Y. J. Zhang; Dean R. Artis; Joseph Schlessinger; Fei Su; Brian Higgins; Raman Mahadevan Iyer; Kurt D'Andrea; Astrid Koehler; Michael Stumm; Paul S. Lin; Richard J. Lee; Joseph F. Grippo

B-RAF is the most frequently mutated protein kinase in human cancers. The finding that oncogenic mutations in BRAF are common in melanoma, followed by the demonstration that these tumours are dependent on the RAF/MEK/ERK pathway, offered hope that inhibition of B-RAF kinase activity could benefit melanoma patients. Herein, we describe the structure-guided discovery of PLX4032 (RG7204), a potent inhibitor of oncogenic B-RAF kinase activity. Preclinical experiments demonstrated that PLX4032 selectively blocked the RAF/MEK/ERK pathway in BRAF mutant cells and caused regression of BRAF mutant xenografts. Toxicology studies confirmed a wide safety margin consistent with the high degree of selectivity, enabling Phase 1 clinical trials using a crystalline formulation of PLX4032 (ref. 5). In a subset of melanoma patients, pathway inhibition was monitored in paired biopsy specimens collected before treatment initiation and following two weeks of treatment. This analysis revealed substantial inhibition of ERK phosphorylation, yet clinical evaluation did not show tumour regressions. At higher drug exposures afforded by a new amorphous drug formulation, greater than 80% inhibition of ERK phosphorylation in the tumours of patients correlated with clinical response. Indeed, the Phase 1 clinical data revealed a remarkably high 81% response rate in metastatic melanoma patients treated at an oral dose of 960 mg twice daily. These data demonstrate that BRAF-mutant melanomas are highly dependent on B-RAF kinase activity.


Cancer Research | 2010

RG7204 (PLX4032), a Selective BRAFV600E Inhibitor, Displays Potent Antitumor Activity in Preclinical Melanoma Models

Hong Yang; Brian Higgins; Kenneth Kolinsky; Kathryn Packman; Zenaida Go; Raman Mahadevan Iyer; Stanley P. Kolis; Sylvia Zhao; Richard T. Lee; Joseph F. Grippo; Kathleen Schostack; Mary Ellen Simcox; David C. Heimbrook; Gideon Bollag; Fei Su

The BRAF(V600E) mutation is common in several human cancers, especially melanoma. RG7204 (PLX4032) is a small-molecule inhibitor of BRAF(V600E) kinase activity that is in phase II and phase III clinical testing. Here, we report a preclinical characterization of the antitumor activity of RG7204 using established in vitro and in vivo models of malignant melanoma. RG7204 potently inhibited proliferation and mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase and ERK phosphorylation in a panel of tumor cell lines, including melanoma cell lines expressing BRAF(V600E) or other mutant BRAF proteins altered at codon 600. In contrast, RG7204 lacked activity in cell lines that express wild-type BRAF or non-V600 mutations. In several tumor xenograft models of BRAF(V600E)-expressing melanoma, we found that RG7204 treatment caused partial or complete tumor regressions and improved animal survival, in a dose-dependent manner. There was no toxicity observed in any dose group in any of the in vivo models tested. Our findings offer evidence of the potent antitumor activity of RG7204 against melanomas harboring the mutant BRAF(V600E) gene.


Journal of Pharmaceutical Sciences | 2013

Improved Human Bioavailability of Vemurafenib, a Practically Insoluble Drug, Using an Amorphous Polymer-Stabilized Solid Dispersion Prepared by a Solvent-Controlled Coprecipitation Process

Navnit Shah; Raman Mahadevan Iyer; Hans-Juergen Mair; Duk Soon Choi; Hung Tian; Ralph Diodone; Karsten Fähnrich; Anni Pabst-Ravot; Kin Tang; Emmanuel Scheubel; Joseph F. Grippo; Sebastian A. Moreira; Zenaida Go; James Mouskountakis; Theresa Louie; Prabha N. Ibrahim; Harpreet K. Sandhu; Linda Rubia; Hitesh Chokshi; Dharmendra Singhal; Waseem Malick

The present work deals with improving the solubility of vemurafenib, a practically insoluble drug, by converting it into an amorphous-solid dispersion using a solvent-controlled precipitation process. The dispersion containing vemurafenib and hypromellose acetate succinate (HPMCAS), an enteric polymer, is termed microprecipitated bulk powder (MBP), in which the drug is uniformly dispersed within the polymeric substrate. HPMCAS was found to be the most suitable polymer for vemurafenib MBP, among a series of enteric polymers based on superior physical stability and drug-release characteristics of the MBP. The MBP provided a greater rate and extent of dissolution than crystalline drug, reaching an apparent drug concentration of 28-35 µg/mL, almost 30-fold higher than solubility of crystalline drug at 1 µg/mL. The supersaturation was also maintained for more than 4 h. Upon exposure to high temperature and humidity, the MBP was destabilized, resulting in crystallization and lower dissolution rate. The control of moisture and temperature is essential to maintain the stability of the MBP. In a relative human bioavailability study, vemurafenib MBP provided a four- to fivefold increase in exposure compared with crystalline drug. Improving solubility with an amorphous-solid dispersion is a viable strategy for the development of practically insoluble compounds.


International Journal of Pharmaceutics | 2012

Development of novel microprecipitated bulk powder (MBP) technology for manufacturing stable amorphous formulations of poorly soluble drugs.

Navnit Shah; Harpreet K. Sandhu; Wantanee Phuapradit; Rodolfo Pinal; Raman Mahadevan Iyer; Antonio A. Albano; Ashish Chatterji; Shalini Anand; Duk Soon Choi; Kin Tang; Hung Tian; Hitesh Chokshi; Dharmendra Singhal; Waseem Malick

A novel method was developed to manufacture amorphous formulations of poorly soluble compounds that cannot be processed with existing methods such as spray drying and melt extrusion. The manufacturing process and the characterization of the resulting amorphous dispersion are presented via examples of two research compounds. The novel process is utilized N,N-dimethylacetamide (DMA) to dissolve the drug and the selected ionic polymer. This solution is then co-precipitated into aqueous medium. The solvent is extracted out by washing and the co-precipitated material is isolated by filtration followed by drying. The dried material is referred to as microprecipitated bulk powder (MBP). The amorphous form prepared using this method not only provides excellent in vitro and in vivo performance but also showed excellent stability. The stabilization of amorphous dispersion is attributed to the high T(g), ionic nature of the polymer that help to stabilize the amorphous form by possible ionic interactions, and/or due to the insolubility of polymer in water. In addition to being an alternate technology for amorphous formulation of difficult compounds, MBP technology provides advantages with respect to stability, density and downstream processing.


Carbohydrate Polymers | 2014

Stability assessment of hypromellose acetate succinate (HPMCAS) NF for application in hot melt extrusion (HME)

Ashish L. Sarode; Sakae Obara; Fumie Tanno; Harpreet K. Sandhu; Raman Mahadevan Iyer; Navnit Shah

HPMCAS is a widely used polymer in the pharmaceutical industry as an excipient. In this work, the physicochemical stability of HPMCAS was investigated for hot melt extrusion (HME) application. The reduction in zero rate viscosity (η0) of the polymer with the increase in temperature was determined using rheological evaluation prior to HME processing. The energy of activation for AS-MF determined by fitting Arrhenius model to the temperature dependent reduction in η0 was found to be slightly lower than that for the other grades of HPMCAS. Glassy yellowish HMEs were obtained using Haake Mini-Lab MicroCompounder operated at 160, 180, and 200°C and 100, 200, and 300 rpm for all the grades at each temperature. Various physicochemical properties of HPMCAS such as glass transition temperature, semi-crystalline nature, solid state functional group properties, moisture content, and solution viscosity were not significantly affected by the HME processing. The most significant change was the release of acetic and succinic acid with the increase in HME temperature and speed. The free acid content release due to HME was directly proportional to the speed at lower operating temperatures. AS-LF was found to be the most stable with the lowest increase in total free acid content even at higher HME temperature and speed. Although the dissolution time was not affected due to HME for AS-LF and AS-MF grades, it was notably increased for AS-HF, perhaps due to significant reduction of succinoyl content. In conclusion, the HME processing conditions for solid dispersions of HPMCAS should be based on the acceptance levels of free acid for the drug and the drug product.


Journal of Pharmaceutical Sciences | 2013

The Impact of Hot Melt Extrusion and Spray Drying on Mechanical Properties and Tableting Indices of Materials Used in Pharmaceutical Development

Raman Mahadevan Iyer; Shridhar Hegde; Yu E. Zhang; James C. DiNunzio; Dharmendra Singhal; A. W. Malick; Gregory E. Amidon

The impact of melt extrusion (HME) and spray drying (SD) on mechanical properties of hypromellose acetate succinate (HPMCAS), copovidone, and their formulated blends was studied and compared with that of reference excipients. Tensile strength (TS), compression pressure (CP), elastic modulus (E), and dynamic hardness (Hd ) were determined along with Hiestand indices using compacts prepared at a solid fraction of ∼0.85. HPMCAS and copovidone exhibited lower Hd , lower CP, and lower E than the reference excipients and moderate TS. HPMCAS was found to be highly brittle based on brittle fracture index values. The CP was 24% and 61% higher for HPMCAS after SD and HME, respectively, than for unprocessed material along with a higher Hd . Furthermore, the TS of HPMCAS and copovidone decreased upon HME. Upon blending melt-extruded HPMCAS with plastic materials such as microcrystalline cellulose, the TS increased. These results suggest that SD and HME could impact reworkability by reducing deformation of materials and in case of HME, likely by increasing density due to heating and shear stress in a screw extruder. A somewhat similar effect was observed for the dynamic binding index (BId ) of the excipients and formulated blends. Such data can be used to quantitate the impact of processing on mechanical properties of materials during tablet formulation development.


Pharmaceutical Development and Technology | 2014

The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients

Raman Mahadevan Iyer; Shridhar Hegde; James C. DiNunzio; Dharmendra Singhal; Waseem Malick

Abstract Material properties play a significant role in pharmaceutical processing. The impact of roller compaction (RC) and tablet compression on solid fraction (SF), tensile strength (TS) and flexural modulus (FM) of Avicel DG [co-processed excipient with 75% microcrystalline cellulose (MCC) and 25% anhydrous dibasic calcium phosphate (DCPA)], lactose and 1:1 Mixture of the two was studied. Materials were roller compacted at different force and roller type and compressed into tablets over a range of compression pressures (CP). SF, TS and FM were determined for ribbons and tablets. Roller force was a significant variable affecting SF while roller type was not. Both SF and TS of tablets increased with CP with Avicel DG exhibiting greater TS than that of 1:1 Mixture while tablets of lactose had the lowest TS. The TS of tablets decreased exponentially with tablet porosity. Ribbon of Avicel DG had higher TS and lower SF than lactose and greater reworkability. This is attributed to plastic deformation of MCC resulting in high degree of bonding and fragmentation of DCPA that fills the void spaces during tablet compression. The lack of significant increase in SF and low tablet TS for lactose upon compression is likely due to its brittle fragmentation and some elastic recovery as shown by the high FM.


Pharmaceutical Development and Technology | 2014

A novel approach to determine solid fraction using a laser-based direct volume measurement device

Raman Mahadevan Iyer; Shridhar Hegde; Dharmendra Singhal; Waseem Malick

Abstract Material properties play a significant role in pharmaceutical processing. In the present study, a novel approach is used to determine solid fraction (SF) based on a direct measurement (DM) of the apparent volume of a sample. The sample was scanned with low intensity laser beams that integrate the sample thickness across the surface (area) and quantitate the apparent volume. The SF by DM method was compared against that obtained by volume displacement (VD) and manual measurement methods. SF was determined by all three methods for formulations of Avicel DG, lactose and a 1:1 mixture of the two. The results from DM method and variability were comparable to that obtained by VD method. The manual method provided lower and more variable results. The DM method was able to differentiate between SF of different ribbon and tablet formulations and at varying force levels. Tracking SF of compacts during tablet development can help in setting acceptable specifications and to understand material deformation behavior during compression. Further, the results of the study indicate that the DM method using laser scan technique was suitable for routine testing of SF of roller compacted ribbons and compressed tablets.


Journal of Pharmaceutical Sciences | 2005

Characterization of Physico-Mechanical Properties of Indomethacin and Polymers to Assess their Suitability for Hot-Melt Extrusion Processs as a Means to Manufacture Solid Dispersion/Solution

Rina J. Chokshi; Harpreet K. Sandhu; Raman Mahadevan Iyer; Navnit Shah; A. Waseem Malick; Hossein Zia


Archive | 2010

Compositions and uses thereof

Dipen Desai; Ralph Diodone; Zenaida Go; Prabha N. Ibrahim; Raman Mahadevan Iyer; Hans-Juergen Mair; Harpreet K. Sandhu; Navnit Shah; Gary Conard Visor; Nicole Wyttenbach; Stephan Lauper; Johannes Pudewell; Frank Wierschem

Collaboration


Dive into the Raman Mahadevan Iyer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dipen Desai

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge