Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramana ChV is active.

Publication


Featured researches published by Ramana ChV.


International Journal of Systematic and Evolutionary Microbiology | 2013

Falsirhodobacter halotolerans gen. nov., sp. nov., isolated from dry soils of a solar saltern.

Y. Subhash; L. Tushar; Sasikala Ch; Ramana ChV

Two bacterial strains (JA744(T) and JA745) were isolated from dry soil samples collected from solar salterns at Humma, Odisha, India. Both strains were Gram-stain-negative, catalase- and oxidase-positive, motile rods. Major fatty acids in both strains included C18:1ω7c, C18:0 and C16:0, while minor amounts of C10:0 3-OH, C12:0, C12:0 3-OH, C14:0 and C16:0 were also present. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, an unidentified glycolipid, five unidentified lipids, an unidentified aminolipid and an unidentified phospholipid made up the polar lipids of both strains. Both strains had bacteriohopane derivatives (BHD1,2) and diploptene as major hopanoids. Mean genomic DNA G+C content was 75 ± 1 mol% and the two strains were closely related (mean DNA-DNA hybridization >90%). Phylogenetic analysis based on the 16S rRNA gene sequence showed that the two strains clustered with species of the genus Rhodobacter belonging to the family Rhodobacteraceae of the class Alphaproteobacteria. The highest sequence similarity was observed with Rhodobacter sphaeroides ATH2.4.1(T) (96%) and other members of the genera Rhodobacter and Pseudorhodobacter (<96%). However, the two strains were positioned distinctly outside the group formed by the other genera of the family Rhodobacteraceae. Distinct morphological, physiological and genotypic differences from previously described taxa support the classification of these isolates as representatives of a novel species in a new genus, for which the name Falsirhodobacter halotolerans gen. nov., sp. nov. is proposed. The type strain of Falsirhodobacter halotolerans is JA744(T) (=KCTC 32158(T) =NBRC 108897(T)).


International Journal of Systematic and Evolutionary Microbiology | 2013

Rhodobacter viridis sp. nov., a phototrophic bacterium isolated from mud of a stream.

Raj Ps; Ramaprasad Ev; Vaseef S; Sasikala Ch; Ramana ChV

A green phototrophic bacterium (strain JA737(T)), which was oval- to rod-shaped, Gram-negative and motile, was isolated from mud of a stream in the Western Ghats of India. Strain JA737(T) contained bacteriochlorophyll a, and the major carotenoid was neurosporene. The major quinone was Q-10 and the polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unidentified aminolipid, two unidentified phospholipids and five unidentified lipids. Phylogenetic analysis showed that the strain clustered with members of the genus Rhodobacter belonging to the family Rhodobacteraceae of the class Alphaproteobacteria. Based on 16S rRNA gene sequence analysis, strain JA737(T) had highest sequence similarity with Rhodobacter capsulatus ATCC 11166(T) (98.8 %), Rhodobacter maris JA276(T) (97 %), Rhodobacter aestuarii JA296(T) (96.7 %) and other members of the genus Rhodobacter (<96 %). However, strain JA737(T) showed 22-55 % DNA-DNA relatedness with the above type strains. On the basis of phenotypic, chemotaxonomic and molecular genetic evidence, strain JA737(T) represents a novel species of the genus Rhodobacter, for which the name Rhodobacter viridis sp. nov. is proposed. The type strain is JA737(T) ( = KCTC 15167(T) = MTCC 11105(T) = NBRC 108864(T)).


International Journal of Systematic and Evolutionary Microbiology | 2012

Rhodoplanes piscinae sp. nov. isolated from pond water.

Chakravarthy Sk; Ramaprasad Ev; E. Shobha; Sasikala Ch; Ramana ChV

Two strains (JA266(T) and JA333) of Gram-negative, rod-shaped, phototrophic, purple non-sulfur bacteria were isolated from a freshwater fish pond and an industrial effluent. Both strains were capable of phototrophic and chemotrophic growth. Bacteriochlorophyll a and carotenoids of the spirilloxanthin series were present as photosynthetic pigments. The major fatty acid for both strains was C(18 : 1)ω7c (>65 %), with minor amounts of 11-methyl C(18  : 1)ω7c, C(16 : 0), C(16 : 1)ω7c and C(18 : 0) also present. Both strains have the lamellar type of intracellular photosynthetic membranes. Ubiquinone-10 (Q(10)) and rhodoquinone-10 (RQ(10)) were present as primary quinone components. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine were the major polar lipids, while minor amounts of amino lipids (AL1, AL2) and an unidentified lipid (L1) were common to both strains. The DNA G+C contents of strains JA266(T) and JA333 were 71.3 and 69.9 mol%, respectively. Phylogenetic analysis on the basis of 16S rRNA gene sequences showed that both strains clustered with members of the genus Rhodoplanes in the class Alphaproteobacteria. Strains JA266(T) and JA333 had gene sequence similarity of 98.7 and 98.9 % with Rhodoplanes serenus TUT3530(T), 96.4 and 96.5 % with Rhodoplanes elegans AS130(T), respectively, and less than 96 % with other members of the genus Rhodoplanes. 16S rRNA gene sequence similarity between the two strains was 99.3 % and they exhibited high (84.7 %) relatedness based on DNA-DNA hybridization. Furthermore, both strains had less than 65 % DNA-DNA relatedness with the type strain R. serenus TUT3530(T). On the basis of phenotypic and genotypic data, it is proposed that strain JA266(T) be classified as a novel species of the genus Rhodoplanes, with the species name Rhodoplanes piscinae sp. nov. The type strain of the proposed novel species is JA266(T) ( = JCM 14934(T) = KCTC 5627(T)), while strain JA333 ( = NBRC 107574 = KCTC 5962) is an additional strain.


International Journal of Systematic and Evolutionary Microbiology | 2014

Rhodovulum salis sp. nov. and Rhodovulum viride sp. nov., phototrophic Alphaproteobacteria isolated from marine habitats.

Srinivas A; Vinay Kumar B; Divya Sree B; L. Tushar; Sasikala Ch; Ramana ChV

Two strains (JA746(T) and JA756(T)) having yellowish brown-to-green pigment were isolated from a solar saltern and a pink pond, respectively. While both strains were non-motile and shared the presence of bacteriochlorophyll-a, major cellular fatty acids (C18 : 1ω7c, C16 : 0, C18 : 0), quinone (Q-10), polar lipids and hopanoids, they differed from each other in their carotenoid composition. The G+C content of genomic DNA of strains JA746(T) and 756(T) was 62.4 and 63.3 mol%, respectively. The 16S rRNA gene-based EzTaxon-e blast search analysis of strains JA746(T) and 756(T) indicated highest sequence similarity with members of the genus Rhodovulum in the family Rhodobacteraceae of the class Alphaproteobacteria. Strain JA746(T) has high sequence similarities with Rhodovulum visakhapatnamense JA181(T) (97.3 %), Rhodovulum steppense A-20s(T) (97.3 %), Rhodovulum phaeolacus JA580(T) (97 %), Rhodovulum strictum MB-G2(T) (97 %) and other members of the genus Rhodovulum (<97 %). Strain JA756(T) has high sequence similarities with Rhodovulum visakhapatnamense JA181(T) (99.8 %), Rhodovulum sulfidophilum Hansen W4(T) (99.1 %), Rhodovulum kholense JA297(T) (97.9 %) and other members of the genus Rhodovulum (<97 %). The sequence similarity between strains JA746(T) and JA756(T) was 97.5 %. However, these strains are not closely related to each other or to their phylogenetic neighbours since the DNA-DNA reassociation values were less than 56 %. The genomic information was also supported by phenotypic and chemotaxonomic results, leading us to classify strains JA746(T) ( = NBRC 108898(T) = KCTC 15180(T)) and JA756(T) ( = NBRC 109122(T) = KCTC 15223(T)) as the type strains of two novel species of the genus Rhodovulum, for which the names Rhodovulum salis sp. nov. and Rhodovulum viride sp. nov. are proposed, respectively.


International Journal of Systematic and Evolutionary Microbiology | 2015

Zooshikella marina sp. nov. a cycloprodigiosin- and prodigiosin-producing marine bacterium isolated from beach sand.

Ramaprasad Ev; Dave Bharti; Sasikala Ch; Ramana ChV

A red-pigmented bacterium producing a metallic green sheen, designated strain JC333T, was isolated from a sand sample collected from Shivrajpur-Kachigad beach, Gujarat, India. Phylogenetic analyses based on the 16S rRNA gene sequence of strain JC333T showed highest sequence similarity to Zooshikella ganghwensis JC2044T (99.24 %) and less than 91.94 % similarity with other members of the class Gammaproteobacteria. DNA-DNA hybridizations between JC333T and Z. ganghwensis JC2044T showed low relatedness values of 19 ± 1.3 % (reciprocal 21 ± 2.2 %). The major respiratory quinone was ubiquinone-9 (Q9) and the polar lipid profile was composed of the major components diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminophospholipid and an unidentified lipid. The presence of C16 : 1ω7c/C16 : 1ω6c, C16 : 0, C18 : 1ω7c and C12 : 0 as major fatty acids supported the affiliation of strain JC333T to the genus Zooshikella. Prodigiosin, cycloprodigiosin and eight other prodigiosin analogues were the pigments of JC333T. Characterization based on 16S rRNA gene sequence analysis, physiological parameters, pigment analysis, ubiquinone, and polar lipid and fatty acid compositions revealed that JC333T represents a novel species of the genus Zooshikella, for which the name Zooshikella marina sp. nov. is proposed. The type strain is JC333T ( = KCTC 42659T = LMG 28823T).


International Journal of Systematic and Evolutionary Microbiology | 2014

Alcanivorax xenomutans sp. nov., a hydrocarbonoclastic bacterium isolated from a shrimp cultivation pond.

Rahul K; Sasikala Ch; L. Tushar; Debadrita R; Ramana ChV

Two bacterial strains (JC109(T) and JC261) were isolated from a sediment sample collected from a shrimp cultivation pond in Tamil Nadu (India). Cells were Gram-stain-negative, motile rods. Both strains were positive for catalase and oxidase, hydrolysed Tween 80, and grew chemo-organoheterotrophically with an optimal pH of 6 (range pH 4-9) and at 30 °C (range 25-40 °C). Based on 16S rRNA gene sequence analysis, strains JC109(T) and JC261 were identified as belonging to the genus Alcanivorax with Alcanivorax dieselolei B-5(T) (sequence similarity values of 99.3 and 99.7%, respectively) and Alcanivorax balearicus MACL04(T) (sequence similarity values of 98.8 and 99.2%, respectively) as their closest phylogenetic neighbours. The 16S rRNA gene sequence similarity between strains JC109(T) and JC261 was 99.6%. The level of DNA-DNA relatedness between the two strains was 88%. Strain JC109(T) showed 31 ± 1 and 26 ± 2% DNA-DNA relatedness with A. dieselolei DSM 16502(T) and A. balearicus DSM 23776(T), respectively. The DNA G+C content of strains JC109(T) and JC261 was 54.5 and 53.4 mol%, respectively. Polar lipids of strain JC109(T) included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified aminophospholipids, two unidentified phospholipids and two unidentified lipids. The major fatty acids were C10:0, C12:0, C16:0, C12:0 3-OH, C16:1ω7c, C18:1ω7c and C19:0 cyclo ω8c. Both strains could utilize diesel oil and a variety of xenobiotics as carbon and energy sources. The results of physiological, biochemical, chemotaxonomic and molecular analyses allowed the clear differentiation of strains JC109(T) and JC261 from all other members of the genus Alcanivorax. Strains JC109(T) and JC261 are thus considered to represent a novel species, for which the name Alcanivorax xenomutans sp. nov. is proposed. The type strain is JC109(T) ( = KCTC 23751(T) = NBRC 108843(T)).


International Journal of Systematic and Evolutionary Microbiology | 2012

Phaeospirillum tilakii sp. nov., a phototrophic alphaproteobacterium isolated from aquatic sediments.

Raj Ps; Chakravarthy Sk; E. V. V. Ramaprasad; Sasikala Ch; Ramana ChV

Two strains (JA492(T) and JA590) of spiral-shaped, anaerobic, Gram-stain-negative, motile, purple non-sulfur bacteria were isolated from aquatic sediments from a bird sanctuary and a stream, respectively, and were characterized by a polyphasic taxonomic approach. Bacteriochlorophyll a and carotenoids (rhodopin, lycopene, hydroxylycopene glucoside and dihydroxylycopene diglucoside) were present as photosynthetic pigments. Intracellular photosynthetic membranes were of the stacked type. The major fatty acids were C(18 : 1)ω7c, C(16 : 0) and summed feature 3 (C(16 : 1)ω6c and/or C(16 : 1)ω7c) in both strains. Ubiquinones and menaquinones were present as major quinone components. The genomic DNA G+C contents of strains JA492(T) and JA590 were 63.8 and 61.5 mol%, respectively. Both strains were closely related (mean DNA-DNA hybridization >70 %). Phylogenetic analysis showed that the strains clustered with species of the genus Phaeospirillum of the family Rhodospirillaceae, class Alphaproteobacteria. Based on 16S rRNA gene sequence analysis, both strains showed highest sequence similarity with Phaeospirillum oryzae JA317(T) (97.2-97.4 %), Phaeospirillum molischianum DSM 120(T) (96.5-96.7 %), Phaeospirillum fulvum DSM 113(T) (96.7-96.9 %) and Phaeospirillum chandramohanii JA145(T) (96.5-96.7 %). DNA-DNA relatedness between strain JA492(T) and its closest relative in the genus Phaeospirillum was less than 42 %. It is evident from phenotypic, chemotaxonomic and molecular genetic data that strain JA492(T) represents a novel species of the genus Phaeospirillum, for which the name Phaeospirillum tilakii sp. nov. is proposed; the type strain is JA492(T) ( = NBRC 107650(T) = KCTC 15012(T)).


International Journal of Systematic and Evolutionary Microbiology | 2016

Alkalispirochaeta cellulosivorans gen. nov., sp. nov., a cellulose-hydrolysing, alkaliphilic, halotolerant bacterium isolated from the gut of a wood-eating cockroach (Cryptocercus punctulatus), and reclassification of four species of Spirochaeta as new combinations within Alkalispirochaeta gen. nov.

Sravanthi T; L. Tushar; Sasikala Ch; Ramana ChV

An obligately anaerobic spirochaete designated strain JC227T was isolated from the gut of a wood-eating cockroach, Cryptocercus punctulatus (Scudder), from the Rann of Kutch, Gujarat, India. Strain JC227T was Gram-stain-negative, mesophilic, halotolerant and alkaliphilic. Based on 16S rRNA gene sequence analysis, strain JC227T belongs to the genus Spirochaeta, with Spirochaeta sphaeroplastigenens JC133T (99.51%), S. odontotermitis JC202T (99.30%), S. alkalica Z-7491T (99.10%), S. americana (98.54%) and other members of the genus Spirochaeta (<92.7%) as its closest phylogenetic neighbours. However, DNA-DNA hybridization between strain JC227T and S. sphaeroplastigenens JC133T, S. odontotermitis JC202T, S. alkalica DSM 8900T and S. americana DSM 14872T was 62±2, 63, 58±2 and 48±4 %, respectively. Strain JC227T contained phosphatidylglycerol, diphosphatidylglycerol, an unidentified glycolipid and six unidentified lipids. Summed feature C18:1ω7c/C18:1ω6c was the predominant cellular fatty acid, with significant proportions of C16:0, C14:0, C12:0, C15:1ω6c, C16:1ω5c, C16:1ω6c/C16:1ω7c and C17:0 2-OH. The DNA G+C content of strain JC227T was 55.5 mol%. On the basis of physiological, biochemical, chemotaxonomic (including metabolomic) and genomic differences from previously described taxa, strain JC227T can be differentiated from members of the genus Spirochaeta and represents a novel species of a new genus, for which the name Alkalispirochaeta cellulosivorans gen. nov., sp. nov. is proposed. The type strain of Alkalispirochaeta cellulosivorans is JC227T (=KCTC 15343T=NBRC 110105T). We also propose the reclassification of Spirochaeta sphaeroplastigenens, Spirochaeta odontotermitis, Spirochaeta alkalica and Spirochaeta americana as Alkalispirochaeta sphaeroplastigenens comb. nov. (type strain JC133T=KCTC 15220T=NBRC 109056T), Alkalispirochaeta odontotermitis comb. nov. (type strain JC202T=KCTC 15324T=NBRC 110104T), Alkalispirochaeta alkalica comb. nov. (type strain Z-7491T=DSM 8900T=ATCC 700262T) and Alkalispirochaeta americana comb. nov. (type strain ASpG1T=ATCC BAA-392T=DSM 14872T). The type species of Alkalispirochaeta gen. nov. is Alkalispirochaeta alkalica comb. nov.


International Journal of Systematic and Evolutionary Microbiology | 2015

Spirochaeta odontotermitis sp. nov., an obligately anaerobic, cellulolytic, halotolerant, alkaliphilic spirochaete isolated from the termite Odontotermes obesus (Rambur) gut.

Sravanthi T; L. Tushar; Sasikala Ch; Ramana ChV

A Gram-stain-negative spirochaete (strain JC202T) was isolated from the gut of the termite Odontotermes obesus (Rambur) from Rann of Kutch, Gujarat, India. This strain was obligately anaerobic, mesophilic, halotolerant and required alkaline conditions for growth. Strain JC202T was resistant to rifampicin and kanamycin, but sensitive to gentamicin, tetracycline, ampicillin and chloramphenicol. Strain JC202T possessed phosphatidylglycerol, diphosphatidylglycerol, glycolipid and six unidentified lipids. C18 : 1ω7c was the predominant cellular fatty acid with significant proportions of C16 : 0, C18 : 1ω9c, C14 : 0, C18 : 0, C16 : 1ω5c, C18 : 1ω5c and C20 : 1ω9c. The DNA G+C content of strain JC202T was 59 mol%. Based on 16S rRNA gene sequence analysis, strain JC202T is considered to belong to the genus Spirochaeta with Spirochaeta sphaeroplastigenens JC133T (100 % similarity), Spirochaeta alkalica Z-7491T (99.92 %), Spirochaeta americana ATCC BAA-392T (99.47 %) and other members of the genus Spirochaeta ( < 93.83 %) as the closest phylogenetic neighbours. However, mean DNA-DNA hydridization values between strain JC202T and S. sphaeroplastigenens JC133T, S. alkalica DSM 8900T ( = Z-7491T) and S. americana DSM 14872T ( = ASpG1T) were 55 ± 2, 22 ± 3 and 32 ± 1 %, respectively. On the basis of physiological, biochemical, chemotaxonomic (including metabolome) and genomic differences from the previously described taxa, strain JC202T is differentiated from other members of the genus Spirochaeta and is considered to represent a novel species, for which the name Spirochaeta odontotermitis sp. nov. is proposed. The type strain is JC202T ( = KCTC 15324T = NBRC 110104T).


International Journal of Systematic and Evolutionary Microbiology | 2015

Hoeflea olei sp. nov., a diesel-oil-degrading, anoxygenic, phototrophic bacterium isolated from backwaters and emended description of the genus Hoeflea.

Rahul K; Azmatunnisa M; Sasikala Ch; Ramana ChV

A Gram-stain-negative, diesel-oil-degrading, rod-shaped bacterium (designated JC234T) was isolated from a water sample collected from diesel-oil-contaminated backwaters in Kerala, India. Strain JC234T was oxidase- and catalase-positive, and grew at 20-35 °C and at pH 7-9. Cells contained bacteriochlorophyll-a, hydroxydemethylspheroidene and three unidentified carotenoids. Growth occurred under aerobic, microaerobic and phototrophic anaerobic conditions. Strain JC234T could utilize diesel-oil as a sole source of carbon and energy. Based on the 16S rRNA gene sequence analysis, strain JC234T belonged to the genus Hoeflea within the family Phyllobacteriaceae, and was closely related to Hoeflea alexandrii AM1V30T (98.1% 16S rRNA gene sequence similarity), Hoeflea halophila JG120-1T (97.6%) and other members of the genus Hoeflea ( < 96.4 ). Strain JC234T showed 22 ± 2% and 28 ± 1.5 % DNA-DNA hybridization with Hoeflea alexandrii KCTC 22096T and Hoeflea halophila KCTC 23107T, respectively. The DNA G+C content of strain JC234T was 54.3 mol %. The major cellular fatty acids were C18 : 1ω7c/C18 : 1ω6c, C16 : 0 and C16 : 1ω7c/C16 : 1ω6c. Phosphatidylcholine, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and phosphatidylglycerol were the major polar lipids. Strain JC234T contained Q10 as the predominant ubiquinone. On the basis of morphological, physiological, genetic, phylogenetic and chemotaxonomical analyses, we conclude that strain JC234T represents a novel species of the genus Hoeflea, for which the name Hoefleaolei sp. nov. is proposed. The type strain is JC234T ( = KCTC 42071T = LMG 28200T). An emended description of the genus Hoeflea is also provided.

Collaboration


Dive into the Ramana ChV's collaboration.

Top Co-Authors

Avatar

L. Tushar

University of Hyderabad

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Parag

University of Hyderabad

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debadrita R

University of Hyderabad

View shared research outputs
Top Co-Authors

Avatar

E. Shobha

University of Hyderabad

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vaseef S

University of Hyderabad

View shared research outputs
Top Co-Authors

Avatar

Y. Subhash

University of Hyderabad

View shared research outputs
Researchain Logo
Decentralizing Knowledge