Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramana Madupu is active.

Publication


Featured researches published by Ramana Madupu.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000

C. Robin Buell; Vinita Joardar; Magdalen Lindeberg; Jeremy D. Selengut; Ian T. Paulsen; Michelle L. Gwinn; Robert J. Dodson; Robert T. DeBoy; A. Scott Durkin; James F. Kolonay; Ramana Madupu; Sean C. Daugherty; Lauren M. Brinkac; Maureen J. Beanan; Daniel H. Haft; William C. Nelson; Tanja Davidsen; Nikhat Zafar; Liwei Zhou; Jia Liu; Qiaoping Yuan; Hoda Khouri; Nadia Fedorova; Bao Tran; Daniel Russell; Kristi Berry; Teresa Utterback; Susan Van Aken; Tamara Feldblyum; Mark D'Ascenzo

We report the complete genome sequence of the model bacterial pathogen Pseudomonas syringae pathovar tomato DC3000 (DC3000), which is pathogenic on tomato and Arabidopsis thaliana. The DC3000 genome (6.5 megabases) contains a circular chromosome and two plasmids, which collectively encode 5,763 ORFs. We identified 298 established and putative virulence genes, including several clusters of genes encoding 31 confirmed and 19 predicted type III secretion system effector proteins. Many of the virulence genes were members of paralogous families and also were proximal to mobile elements, which collectively comprise 7% of the DC3000 genome. The bacterium possesses a large repertoire of transporters for the acquisition of nutrients, particularly sugars, as well as genes implicated in attachment to plant surfaces. Over 12% of the genes are dedicated to regulation, which may reflect the need for rapid adaptation to the diverse environments encountered during epiphytic growth and pathogenesis. Comparative analyses confirmed a high degree of similarity with two sequenced pseudomonads, Pseudomonas putida and Pseudomonas aeruginosa, yet revealed 1,159 genes unique to DC3000, of which 811 lack a known function.


PLOS Biology | 2005

Major structural differences and novel potential virulence mechanisms from the genomes of multiple campylobacter species.

Derrick E. Fouts; Emmanuel F. Mongodin; Robert E. Mandrell; William G. Miller; David A. Rasko; Jacques Ravel; Lauren M. Brinkac; Robert T. DeBoy; Craig T. Parker; Sean C. Daugherty; Robert J. Dodson; A. Scott Durkin; Ramana Madupu; Steven A. Sullivan; Jyoti Shetty; Mobolanle A Ayodeji; Alla Shvartsbeyn; Michael C. Schatz; Jonathan H. Badger; Claire M. Fraser; Karen E. Nelson

Sequencing and comparative genome analysis of four strains of Campylobacter including C. lari RM2100, C. upsaliensis RM3195, and C. coli RM2228 has revealed major structural differences that are associated with the insertion of phage- and plasmid-like genomic islands, as well as major variations in the lipooligosaccharide complex. Poly G tracts are longer, are greater in number, and show greater variability in C. upsaliensis than in the other species. Many genes involved in host colonization, including racR/S, cadF, cdt, ciaB, and flagellin genes, are conserved across the species, but variations that appear to be species specific are evident for a lipooligosaccharide locus, a capsular (extracellular) polysaccharide locus, and a novel Campylobacter putative licABCD virulence locus. The strains also vary in their metabolic profiles, as well as their resistance profiles to a range of antibiotics. It is evident that the newly identified hypothetical and conserved hypothetical proteins, as well as uncharacterized two-component regulatory systems and membrane proteins, may hold additional significant information on the major differences in virulence among the species, as well as the specificity of the strains for particular hosts.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae

Hervé Tettelin; Vega Masignani; Michael J. Cieslewicz; Jonathan A. Eisen; Scott N. Peterson; Michael R. Wessels; Ian T. Paulsen; Karen E. Nelson; Immaculada Margarit; Timothy D. Read; Lawrence C. Madoff; Alex M. Wolf; Maureen J. Beanan; Lauren M. Brinkac; Sean C. Daugherty; Robert T. DeBoy; A. Scott Durkin; James F. Kolonay; Ramana Madupu; Matthew Lewis; Diana Radune; Nadezhda B. Fedorova; David Scanlan; Hoda Khouri; Stephanie Mulligan; Heather A. Carty; Robin T. Cline; Susan Van Aken; John Gill; Maria Scarselli

The 2,160,267 bp genome sequence of Streptococcus agalactiae, the leading cause of bacterial sepsis, pneumonia, and meningitis in neonates in the U.S. and Europe, is predicted to encode 2,175 genes. Genome comparisons among S. agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and the other completely sequenced genomes identified genes specific to the streptococci and to S. agalactiae. These in silico analyses, combined with comparative genome hybridization experiments between the sequenced serotype V strain 2603 V/R and 19 S. agalactiae strains from several serotypes using whole-genome microarrays, revealed the genetic heterogeneity among S. agalactiae strains, even of the same serotype, and provided insights into the evolution of virulence mechanisms.


Omics A Journal of Integrative Biology | 2008

Toward an Online Repository of Standard Operating Procedures (SOPs) for (Meta)genomic Annotation

Samuel V. Angiuoli; Aaron Gussman; William Klimke; Guy Cochrane; Dawn Field; George M Garrity; Chinnappa D. Kodira; Nikos C. Kyrpides; Ramana Madupu; Victor Markowitz; Tatiana Tatusova; Nicholas R. Thomson; Owen White

The methodologies used to generate genome and metagenome annotations are diverse and vary between groups and laboratories. Descriptions of the annotation process are helpful in interpreting genome annotation data. Some groups have produced Standard Operating Procedures (SOPs) that describe the annotation process, but standards are lacking for structure and content of these descriptions. In addition, there is no central repository to store and disseminate procedures and protocols for genome annotation. We highlight the importance of SOPs for genome annotation and endorse an online repository of SOPs.


Science | 2010

A catalog of reference genomes from the human microbiome.

Karen E. Nelson; George M. Weinstock; Sarah K. Highlander; Kim C. Worley; Heather Huot Creasy; Jennifer R. Wortman; Douglas B. Rusch; Makedonka Mitreva; Erica Sodergren; Asif T. Chinwalla; Michael Feldgarden; Dirk Gevers; Brian J. Haas; Ramana Madupu; Doyle V. Ward; Bruce Birren; Richard A. Gibbs; Barbara A. Methé; Joseph F. Petrosino; Robert L. Strausberg; Granger Sutton; Owen White; Richard Wilson; Scott Durkin; Michelle G. Giglio; Sharvari Gujja; Clint Howarth; Chinnappa D. Kodira; Nikos C. Kyrpides; Teena Mehta

News from the Inner Tube of Life A major initiative by the U.S. National Institutes of Health to sequence 900 genomes of microorganisms that live on the surfaces and orifices of the human body has established standardized protocols and methods for such large-scale reference sequencing. By combining previously accumulated data with new data, Nelson et al. (p. 994) present an initial analysis of 178 bacterial genomes. The sampling so far barely scratches the surface of the microbial diversity found on humans, but the work provides an important baseline for future analyses. Standardized protocols and methods are being established for large-scale sequencing of the microorganisms living on humans. The human microbiome refers to the community of microorganisms, including prokaryotes, viruses, and microbial eukaryotes, that populate the human body. The National Institutes of Health launched an initiative that focuses on describing the diversity of microbial species that are associated with health and disease. The first phase of this initiative includes the sequencing of hundreds of microbial reference genomes, coupled to metagenomic sequencing from multiple body sites. Here we present results from an initial reference genome sequencing of 178 microbial genomes. From 547,968 predicted polypeptides that correspond to the gene complement of these strains, previously unidentified (“novel”) polypeptides that had both unmasked sequence length greater than 100 amino acids and no BLASTP match to any nonreference entry in the nonredundant subset were defined. This analysis resulted in a set of 30,867 polypeptides, of which 29,987 (~97%) were unique. In addition, this set of microbial genomes allows for ~40% of random sequences from the microbiome of the gastrointestinal tract to be associated with organisms based on the match criteria used. Insights into pan-genome analysis suggest that we are still far from saturating microbial species genetic data sets. In addition, the associated metrics and standards used by our group for quality assurance are presented.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts

Ian T. Paulsen; Rekha Seshadri; Karen E. Nelson; Jonathan A. Eisen; John F. Heidelberg; Timothy D. Read; Robert J. Dodson; Lowell Umayam; Lauren M. Brinkac; Maureen J. Beanan; Sean C. Daugherty; Robert T. DeBoy; A. Scott Durkin; James F. Kolonay; Ramana Madupu; William C. Nelson; Bola Ayodeji; Margaret Kraul; Jyoti Shetty; Joel A. Malek; Susan Van Aken; Steven Riedmuller; Hervé Tettelin; Steven R. Gill; Owen White; David L. Hoover; Luther E. Lindler; Shirley M. Halling; Stephen M. Boyle; Claire M. Fraser

The 3.31-Mb genome sequence of the intracellular pathogen and potential bioterrorism agent, Brucella suis, was determined. Comparison of B. suis with Brucella melitensis has defined a finite set of differences that could be responsible for the differences in virulence and host preference between these organisms, and indicates that phage have played a significant role in their divergence. Analysis of the B. suis genome reveals transport and metabolic capabilities akin to soil/plant-associated bacteria. Extensive gene synteny between B. suis chromosome 1 and the genome of the plant symbiont Mesorhizobium loti emphasizes the similarity between this animal pathogen and plant pathogens and symbionts. A limited repertoire of genes homologous to known bacterial virulence factors were identified.


Applied and Environmental Microbiology | 2009

Three Genomes from the Phylum Acidobacteria Provide Insight into the Lifestyles of These Microorganisms in Soils

Naomi L. Ward; Jean F. Challacombe; Peter H. Janssen; Bernard Henrissat; Pedro M. Coutinho; Martin Wu; Gary Xie; Daniel H. Haft; Michelle Sait; Jonathan H. Badger; Ravi D. Barabote; Brent Bradley; Thomas Brettin; Lauren M. Brinkac; David Bruce; Todd Creasy; Sean C. Daugherty; Tanja Davidsen; Robert T. DeBoy; J. Chris Detter; Robert J. Dodson; A. Scott Durkin; Anuradha Ganapathy; Michelle Gwinn-Giglio; Cliff Han; Hoda Khouri; Hajnalka Kiss; Sagar Kothari; Ramana Madupu; Karen E. Nelson

ABSTRACT The complete genomes of three strains from the phylum Acidobacteria were compared. Phylogenetic analysis placed them as a unique phylum. They share genomic traits with members of the Proteobacteria, the Cyanobacteria, and the Fungi. The three strains appear to be versatile heterotrophs. Genomic and culture traits indicate the use of carbon sources that span simple sugars to more complex substrates such as hemicellulose, cellulose, and chitin. The genomes encode low-specificity major facilitator superfamily transporters and high-affinity ABC transporters for sugars, suggesting that they are best suited to low-nutrient conditions. They appear capable of nitrate and nitrite reduction but not N2 fixation or denitrification. The genomes contained numerous genes that encode siderophore receptors, but no evidence of siderophore production was found, suggesting that they may obtain iron via interaction with other microorganisms. The presence of cellulose synthesis genes and a large class of novel high-molecular-weight excreted proteins suggests potential traits for desiccation resistance, biofilm formation, and/or contribution to soil structure. Polyketide synthase and macrolide glycosylation genes suggest the production of novel antimicrobial compounds. Genes that encode a variety of novel proteins were also identified. The abundance of acidobacteria in soils worldwide and the breadth of potential carbon use by the sequenced strains suggest significant and previously unrecognized contributions to the terrestrial carbon cycle. Combining our genomic evidence with available culture traits, we postulate that cells of these isolates are long-lived, divide slowly, exhibit slow metabolic rates under low-nutrient conditions, and are well equipped to tolerate fluctuations in soil hydration.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Complete genome sequence of the Q-fever pathogen Coxiella burnetii.

Rekha Seshadri; Ian T. Paulsen; Jonathan A. Eisen; Timothy D. Read; Karen E. Nelson; William C. Nelson; Naomi L. Ward; Hervé Tettelin; Tanja Davidsen; Maureen J. Beanan; Robert T. DeBoy; Sean C. Daugherty; Lauren M. Brinkac; Ramana Madupu; Robert J. Dodson; Hoda Khouri; K. Lee; Heather A. Carty; David Scanlan; Robert A. Heinzen; Herbert A. Thompson; James E. Samuel; Claire M. Fraser; John F. Heidelberg

The 1,995,275-bp genome of Coxiella burnetii, Nine Mile phase I RSA493, a highly virulent zoonotic pathogen and category B bioterrorism agent, was sequenced by the random shotgun method. This bacterium is an obligate intracellular acidophile that is highly adapted for life within the eukaryotic phagolysosome. Genome analysis revealed many genes with potential roles in adhesion, invasion, intracellular trafficking, host-cell modulation, and detoxification. A previously uncharacterized 13-member family of ankyrin repeat-containing proteins is implicated in the pathogenesis of this organism. Although the lifestyle and parasitic strategies of C. burnetii resemble that of Rickettsiae and Chlamydiae, their genome architectures differ considerably in terms of presence of mobile elements, extent of genome reduction, metabolic capabilities, and transporter profiles. The presence of 83 pseudogenes displays an ongoing process of gene degradation. Unlike other obligate intracellular bacteria, 32 insertion sequences are found dispersed in the chromosome, indicating some plasticity in the C. burnetii genome. These analyses suggest that the obligate intracellular lifestyle of C. burnetii may be a relatively recent innovation.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Evolution of sensory complexity recorded in a myxobacterial genome.

Barry S. Goldman; William C. Nierman; Dale Kaiser; S. C. Slater; Anthony S. Durkin; Jonathan A. Eisen; Catherine M. Ronning; W. B. Barbazuk; M. Blanchard; C. Field; C. Halling; G. Hinkle; O. Iartchuk; H. S. Kim; Chris Mackenzie; Ramana Madupu; N. Miller; Alla Shvartsbeyn; Steven A. Sullivan; M. Vaudin; R. Wiegand; Heidi B. Kaplan

Myxobacteria are single-celled, but social, eubacterial predators. Upon starvation they build multicellular fruiting bodies using a developmental program that progressively changes the pattern of cell movement and the repertoire of genes expressed. Development terminates with spore differentiation and is coordinated by both diffusible and cell-bound signals. The growth and development of Myxococcus xanthus is regulated by the integration of multiple signals from outside the cells with physiological signals from within. A collection of M. xanthus cells behaves, in many respects, like a multicellular organism. For these reasons M. xanthus offers unparalleled access to a regulatory network that controls development and that organizes cell movement on surfaces. The genome of M. xanthus is large (9.14 Mb), considerably larger than the other sequenced δ-proteobacteria. We suggest that gene duplication and divergence were major contributors to genomic expansion from its progenitor. More than 1,500 duplications specific to the myxobacterial lineage were identified, representing >15% of the total genes. Genes were not duplicated at random; rather, genes for cell–cell signaling, small molecule sensing, and integrative transcription control were amplified selectively. Families of genes encoding the production of secondary metabolites are overrepresented in the genome but may have been received by horizontal gene transfer and are likely to be important for predation.


Journal of Bacteriology | 2006

Genome Sequence of Aeromonas hydrophila ATCC 7966T: Jack of All Trades

Rekha Seshadri; Sam W. Joseph; Ashok K. Chopra; Jian Sha; Jonathan G. Shaw; Joerg Graf; Daniel H. Haft; Martin Wu; Qinghu Ren; M. J. Rosovitz; Ramana Madupu; Luke J. Tallon; Mary Kim; Shaohua Jin; Hue Vuong; O. Colin Stine; Afsar Ali; Amy J. Horneman; John F. Heidelberg

The complete genome of Aeromonas hydrophila ATCC 7966(T) was sequenced. Aeromonas, a ubiquitous waterborne bacterium, has been placed by the Environmental Protection Agency on the Contaminant Candidate List because of its potential to cause human disease. The 4.7-Mb genome of this emerging pathogen shows a physiologically adroit organism with broad metabolic capabilities and considerable virulence potential. A large array of virulence genes, including some identified in clinical isolates of Aeromonas spp. or Vibrio spp., may confer upon this organism the ability to infect a wide range of hosts. However, two recognized virulence markers, a type III secretion system and a lateral flagellum, that are reported in other A. hydrophila strains are not identified in the sequenced isolate, ATCC 7966(T). Given the ubiquity and free-living lifestyle of this organism, there is relatively little evidence of fluidity in terms of mobile elements in the genome of this particular strain. Notable aspects of the metabolic repertoire of A. hydrophila include dissimilatory sulfate reduction and resistance mechanisms (such as thiopurine reductase, arsenate reductase, and phosphonate degradation enzymes) against toxic compounds encountered in polluted waters. These enzymes may have bioremediative as well as industrial potential. Thus, the A. hydrophila genome sequence provides valuable insights into its ability to flourish in both aquatic and host environments.

Collaboration


Dive into the Ramana Madupu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hoda Khouri

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

William C. Nelson

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Karen E. Nelson

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Robert T. DeBoy

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

A. Scott Durkin

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge