Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramaswamy Ramchandran is active.

Publication


Featured researches published by Ramaswamy Ramchandran.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2012

miR-210 has an antiapoptotic effect in pulmonary artery smooth muscle cells during hypoxia

Deming Gou; Ramaswamy Ramchandran; Xiao Peng; Lijun Yao; Kang Kang; Joy Sarkar; Zhixin Wang; Goufei Zhou; J. Usha Raj

MicroRNAs (miRNAs) were recently reported to play an important role in the pathogenesis of pulmonary arterial hypertension (PAH), but it is not clear which miRNAs are important or what pathways are involved in the process. Because hypoxia is an important stimulus for human pulmonary artery smooth muscle cell (HPASMC) proliferation and PAH, we performed miRNA microarray assays in hypoxia-treated and control HPASMC. We found that miR-210 is the predominant miRNA induced by hypoxia in HPASMC. Induction of miR-210 was also observed in whole lungs of mice with chronic hypoxia-induced PAH. We found that transcriptional induction of miR-210 in HPASMC is hypoxia-inducible factor-1α dependent. Inhibition of miR-210 in HPASMC caused a significant decrease in cell number due to increased apoptosis. We found that miR-210 appears to mediate its antiapoptotic effects via the regulation of transcription factor E2F3, a direct target of miR-210. Our results have identified miR-210 as a hypoxia-inducible miRNA both in vitro and in vivo, which inhibits pulmonary vascular smooth muscle cell apoptosis in hypoxia by specifically repressing E2F3 expression.


Nature Immunology | 2008

Nonmuscle myosin light-chain kinase mediates neutrophil transmigration in sepsis-induced lung inflammation by activating β2 integrins

Jingsong Xu; Xiao Pei Gao; Ramaswamy Ramchandran; You Yang Zhao; Stephen M. Vogel; Asrar B. Malik

Nonmuscle myosin light-chain kinase (MYLK) mediates increased lung vascular endothelial permeability in lipopolysaccharide-induced lung inflammatory injury, the chief cause of the acute respiratory distress syndrome. In a lung injury model, we demonstrate here that MYLK was also essential for neutrophil transmigration, but that this function was mostly independent of myosin II regulatory light chain, the only known substrate of MYLK. Instead, MYLK in neutrophils was required for the recruitment and activation of the tyrosine kinase Pyk2, which mediated full activation of β2 integrins. Our results demonstrate that MYLK-mediated activation of β2 integrins through Pyk2 links β2 integrin signaling to the actin motile machinery of neutrophils.


Circulation Research | 2005

Cdc42 Regulates Adherens Junction Stability and Endothelial Permeability by Inducing α-Catenin Interaction With the Vascular Endothelial Cadherin Complex

Michael Broman; Panos Kouklis; Xiaopei Gao; Ramaswamy Ramchandran; Radu Neamu; Richard D. Minshall; Asrar B. Malik

The endothelial adherens junctions (AJs) consist of trans-oligomers of membrane spanning vascular endothelial (VE)-cadherin proteins, which bind β-catenin through their cytoplasmic domain. β-Catenin in turn binds α-catenin and connects the AJ complex with the actin cytoskeleton. We addressed the in vivo effects of loss of VE-cadherin interactions on lung vascular endothelial permeability and the role of specific Rho GTPase effectors in regulating the increase in permeability induced by AJ destabilization. We used cationic liposomes encapsulating the mutant of VE-cadherin lacking the extracellular domain (&Dgr;EXD) to interfere with AJ assembly in mouse lung endothelial cells. We observed that lung vascular permeability (quantified as microvessel filtration coefficient [Kf,c]) was increased 5-fold in lungs expressing &Dgr;EXD. This did not occur to the same degree on expression of the VE-cadherin mutant, &Dgr;EXD&Dgr;β, lacking the β-catenin–binding site. The increased vascular permeability was the result of destabilization of VE-cadherin homotypic interaction induced by a shift in the binding of β-catenin from wild-type VE-cadherin to the expressed &Dgr;EXD mutant. Because &Dgr;EXD expression in endothelial cells activated the Rho GTPase Cdc42, we addressed its role in the mechanism of increased endothelial permeability induced by AJ destabilization. Coexpression of dominant-negative Cdc42 (N17Cdc42) prevented the increase in Kf,c induced by &Dgr;EXD. This was attributed to inhibition of the association of α-catenin with the &Dgr;EXD–β-catenin complex. The results demonstrate that Cdc42 regulates AJ permeability by controlling the binding of α-catenin with β-catenin and the consequent interaction of the VE-cadherin/catenin complex with the actin cytoskeleton.


Journal of Biological Chemistry | 2013

MicroRNA-124 Suppresses the Transactivation of Nuclear Factor of Activated T Cells by Targeting Multiple Genes and Inhibits the Proliferation of Pulmonary Artery Smooth Muscle Cells

Kang Kang; Xiao Peng; Xiaoying Zhang; Yuna Wang; Lishu Zhang; Li Gao; Tingting Weng; Honghao Zhang; Ramaswamy Ramchandran; J. Usha Raj; Deming Gou; Lin Liu

Background: The NFAT signaling pathway is linked to pulmonary arterial hypertension. Results: MicroRNA screening revealed that miR-124 robustly inhibits NFAT activity, dephosphorylation, and nuclear translocation of NFAT by targeting multiple genes, NFATc1, CAMTA1, and PTBP1. Conclusion: miR-124 is an effective and multipronged inhibitor of NFAT signaling. Significance: miR-124 might be a potential immunosuppressant that may have biological effects linked to pulmonary arterial hypertension. Abnormal proliferation and phenotypic modulation of pulmonary artery smooth muscle cells (PASMC) contributes to the pathogenesis of numerous cardiovascular disorders, including pulmonary arterial hypertension (PAH). The nuclear factor of activated T cells (NFAT) signaling pathway is linked to PASMC proliferation and PAH. MicroRNAs (miRNAs) are small non-coding RNAs that function in diverse biological processes. To systemically identify the specific miRNAs that regulate the NFAT pathway, a human primary miRNA library was applied for cell-based high throughput screening with the NFAT luciferase reporter system. Eight miRNAs were found to modulate NFAT activity efficiently. Of them, miR-124 robustly inhibited NFAT reporter activity and decreased both the dephosphorylation and the nuclear translocation of NFAT. miR-124 also inhibited NFAT-dependent transcription of IL-2 in Jurkat T cells. miR-124 exerted its effects by targeting multiple genes, including a known component of the NFAT pathway, NFATc1, and two new regulators of NFAT signaling, CAMTA1 (calmodulin-binding transcription activator 1) and PTBP1 (polypyrimidine tract-binding protein 1). Physiologically, miR-124 was down-regulated by hypoxia in human PASMC, consistent with the activation of NFAT during this process. Down-regulation of miR-124 was also observed in 3-week hypoxia-treated mouse lungs. Furthermore, the overexpression of miR-124 not only inhibited human PASMC proliferation but also maintained its differentiated phenotype by repressing the NFAT pathway. Taken together, our data provide the first evidence that miR-124 acts as an inhibitor of the NFAT pathway. Down-regulation of miR-124 in hypoxia-treated PASMC and its antiproliferative and prodifferentiation effects imply a potential value for miR-124 in the treatment of PAH.


Journal of Cellular Biochemistry | 2006

Nuclear myosin I is necessary for the formation of the first phosphodiester bond during transcription initiation by RNA polymerase II

Wilma A. Hofmann; Gabriela M. Vargas; Ramaswamy Ramchandran; Ljuba Stojiljkovic; James A. Goodrich; Primal de Lanerolle

The nuclear isoform of myosin, Nuclear Myosin I (NMI) is involved in transcription by RNA polymerase I. Previous experiments showing that antibodies to NMI inhibit transcription by RNA polymerase II using HeLa cell nuclear extract (NE) suggested that NMI might be a general transcription factor for RNA polymerases. In this study we used a minimal in vitro transcription system to investigate the involvement of NMI in transcription by RNA polymerase II in detail. We demonstrate that NMI co‐purifies with RNA polymerase II and that NMI is necessary for basal transcription by RNA polymerase II because antibodies to NMI inhibit transcription while adding NMI stimulates transcription. Further investigation revealed that NMI is specifically involved in transcription initiation. Finally, by employing an abortive transcription initiation assay, we demonstrate that NMI is crucial for the formation of the first phosphodiester bond during transcription initiation. J. Cell. Biochem. 99: 1001–1009, 2006.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2012

Pulmonary artery smooth muscle cell proliferation and migration in fetal lambs acclimatized to high-altitude long-term hypoxia: role of histone acetylation

Qiwei Yang; Ziyan Lu; Ramaswamy Ramchandran; Lawrence D. Longo; J. Usha Raj

High-altitude long-term hypoxia (LTH) is known to induce pulmonary arterial smooth muscle cell (PASMC) proliferation in the fetus, leading to pulmonary arterial remodeling and pulmonary hypertension of the newborn. The mechanisms underlying these conditions remain enigmatic however. We hypothesized that epigenetic alterations in fetal PASMC induced by high-altitude LTH may play an important role in modulating their proliferation during pulmonary arterial remodeling. To test this hypothesis, we have analyzed epigenetic alterations in the pulmonary vasculature of fetal lambs exposed to high-altitude LTH [pregnant ewes were kept at 3,801 m altitude from ~40 to 145 days gestation] or to sea level atmosphere. Intrapulmonary arteries were isolated, and fetal PASMC were cultured from both control and LTH fetuses. Compared with controls, in LTH fetus pulmonary arteries measurements of histone acetylation and global DNA methylation demonstrated reduced levels of global histone 4 acetylation and DNA methylation, accompanied by the loss of the cyclin-dependent kinase inhibitor p21. Treatment of LTH fetal PASMCs with histone deacetylase (HDAC) inhibitor trichostatin A decreased their proliferation rate, in part because of altered expression of p21 at both RNA and protein level. In PASMC of LTH fetuses, HDAC inhibition also decreased PDGF-induced cell migration and ERK1/2 activation and modulated global DNA methylation. On the basis of these observations, we propose that epigenetic alterations (reduced histone acetylation and DNA methylation) caused by chronic hypoxia leads to fetal PASMC proliferation and vessel remodeling associated with vascular proliferative disease and that this process is regulated by p21.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2008

Critical role of Cdc42 in mediating endothelial barrier protection in vivo

Ramaswamy Ramchandran; Dolly Mehta; Stephen M. Vogel; Muhammad K. Mirza; Panos Kouklis; Asrar B. Malik

Activation of the Rho GTPase Cdc42 has been shown in endothelial cell monolayers to prevent disassembly of interendothelial junctions and the increase in endothelial permeability. Here, we addressed the in vivo role of Cdc42 activity in mediating endothelial barrier protection in lungs by generating mice expressing the dominant active mutant V12Cdc42 protein in vascular endothelial cells targeted via the VE-cadherin promoter. These mice developed normally and exhibited constitutively active GTP-bound Cdc42. The increase in lung vascular permeability and gain in tissue water content in response to intraperitoneal lipopolysaccharide challenge (7 mg/kg) were markedly attenuated in the transgenic mice. To address the basis of the protective effect, we observed that expression of V12Cdc42 mutant in endothelial monolayers reduced the decrease in transendothelial electrical resistance, a measure of opening of interendothelial junctions, thus indicating that Cdc42 activity preserved junctional integrity. RhoA activity in V12Cdc42-expressing endothelial monolayers was reduced compared with untransfected cells, suggesting that activated Cdc42 functions by counteracting the canonical RhoA-mediated mechanism of endothelial hyperpermeability. Therefore, Cdc42 activity of microvessel endothelial cells is a critical determinant of junctional barrier restrictiveness and may represent a means of therapeutically modulating increased lung vascular permeability and edema formation.


American Journal of Respiratory Cell and Molecular Biology | 2012

Hypoxia-Induced Pulmonary Arterial Smooth Muscle Cell Proliferation Is Controlled by Forkhead Box M1

Aarti Raghavan; Guofei Zhou; Qiyuan Zhou; Joyce Christina F. Ibe; Ramaswamy Ramchandran; Qiwei Yang; Harini Racherla; Pradip Raychaudhuri; J. Usha Raj

Pulmonary arterial hypertension (PAH) is a devastating disease, and no effective treatments are available. Hypoxia-induced pulmonary artery remodeling, including smooth muscle cell proliferation, contributes to PAH, but the exact mechanisms underlying this abnormal process are largely undefined. The forkhead box M1 (FoxM1) transcription factor regulates cancer cell growth by modulating gene expression critical for cell cycle progression. Here, we report for the first time, to the best of our knowledge, a novel function of FoxM1 in the hypoxia-stimulated proliferation of human pulmonary artery smooth muscle cells (HPASMCs). Exposure to hypoxia caused a marked up-regulation of FoxM1 gene expression, mainly at the transcription level, and this induction correlated with HPASMC cell proliferation. The knockdown of FoxM1 inhibited the hypoxia-stimulated proliferation of HPASMCs. We found that the knockdown of HIF-2α, but not HIF-1α, diminished FoxM1 induction in response to hypoxia. However, the knockdown of FoxM1 did not alter expression levels of HIF-2α or HIF-1α, suggesting that HIF-2α is an upstream regulator of FoxM1. Furthermore, the knockdown of FoxM1 prevented the hypoxia-induced expression of aurora A kinase and cyclin D1. Collectively, our results suggest that hypoxia induces FoxM1 gene expression in an HIF-2α-dependent pathway, thereby promoting HPASMC proliferation.


Scientific Reports | 2015

Hypoxia inducible factor-1 mediates expression of miR-322: potential role in proliferation and migration of pulmonary arterial smooth muscle cells

Yan Zeng; Hongtao Liu; Kang Kang; Zhiwei Wang; Gang Hui; Xiaoying Zhang; Jiasheng Zhong; Wenda Peng; Ramaswamy Ramchandran; J. Usha Raj; Deming Gou

There is growing evidence that microRNAs play important roles in cellular responses to hypoxia and in pulmonary hypertensive vascular remodeling, but the exact molecular mechanisms involved are not fully elucidated. In this study, we identified miR-322 as one of the microRNAs induced in lungs of chronically hypoxic mice and rats. The expression of miR-322 was also upregulated in primary cultured rat pulmonary arterial smooth muscle cells (PASMC) in response to hypoxia. We demonstrated that HIF-1α, but not HIF-2α, transcriptionally upregulates the expression of miR-322 in hypoxia. Furthermore, miR-322 facilitated the accumulation of HIF-1α in the nucleus and promoted hypoxia-induced cell proliferation and migration. Direct targeting BMPR1a and smad5 by miR-322 was demonstrated in PASMCs suggesting that downregulation of BMP-Smad signaling pathway may be mediating the hypoxia-induced PASMC proliferation and migration. Our study implicates miR-322 in the hypoxic proliferative response of PASMCs suggesting that it may be playing a role in pulmonary vascular remodeling associated with pulmonary hypertension.


Scientific Reports | 2016

MicroRNA-223 Attenuates Hypoxia-induced Vascular Remodeling by Targeting RhoB/MLC2 in Pulmonary Arterial Smooth Muscle Cells

Yan Zeng; Xiaoying Zhang; Kang Kang; Jidong Chen; Zhiqin Wu; Jinyong Huang; Wenju Lu; Yuqin Chen; Zhang J; Zhiwei Wang; Yujia Zhai; Junle Qu; Ramaswamy Ramchandran; J. Usha Raj; Jian Wang; Deming Gou

There is growing evidence that microRNAs are implicated in pulmonary arterial hypertension (PAH), but underlying mechanisms remain elusive. Here, we identified that miR-223 was significantly downregulated in chronically hypoxic mouse and rat lungs, as well as in pulmonary artery and pulmonary artery smooth muscle cells (PASMC) exposed to hypoxia. Knockdown of miR-223 increased PASMC proliferation. In contrast, miR-223 overexpression abrogated cell proliferation, migration and stress fiber formation. Administering miR-223 agomir in vivo antagonized hypoxia-induced increase in pulmonary artery pressure and distal arteriole muscularization. RhoB, which was increased by hypoxia, was identified as one of the targets of miR-223. Overexpressed miR-223 suppressed RhoB and inhibited the consequent phosphorylation of myosin phosphatase target subunit (MYPT1) and the expression of myosin light chain of myosin II (MLC2), which was identified as another target of miR-223. Furthermore, serum miR-223 levels were decreased in female patients with PAH associated with congenital heart disease. Our study provides the first evidence that miR-223 can regulate PASMC proliferation, migration, and actomyosin reorganization through its novel targets, RhoB and MLC2, resulting in vascular remodeling and the development of PAH. It also highlights miR-223 as a potential circulating biomarker and a small molecule drug for diagnosis and treatment of PAH.

Collaboration


Dive into the Ramaswamy Ramchandran's collaboration.

Top Co-Authors

Avatar

J. Usha Raj

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Aarti Raghavan

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Qiwei Yang

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joy Sarkar

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Asrar B. Malik

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Guofei Zhou

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Miranda Sun

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Prasanna Turaka

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge