Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramendra K. Kundu is active.

Publication


Featured researches published by Ramendra K. Kundu.


Journal of Clinical Investigation | 2003

Endothelial lipase is a major determinant of HDL level

Tatsuro Ishida; Sungshin Choi; Ramendra K. Kundu; Ken-ichi Hirata; Edward M. Rubin; Allen D. Cooper; Thomas Quertermous

A new member of the lipase gene family, initially termed endothelial lipase (gene nomenclature, LIPG; protein, EL), is expressed in a variety of different tissues, suggesting a general role in lipid metabolism. To assess the hypothesis that EL plays a physiological role in lipoprotein metabolism in vivo, we have used gene targeting of the native murine locus and transgenic introduction of the human LIPG locus in mice to modulate the level of EL expression. Evaluation of these alleles in a C57Bl/6 background revealed an inverse relationship between HDL cholesterol level and EL expression. Fasting plasma HDL cholesterol was increased by 57% in LIPG(-/-) mice and 25% in LIPG(+/-) mice and was decreased by 19% in LIPG transgenic mice as compared with syngeneic controls. Detailed analysis of lipoprotein particle composition indicated that this increase was due primarily to an increased number of HDL particles. Phospholipase assays indicated that EL is a primary contributor to phospholipase activity in mouse. These data indicate that expression levels of this novel lipase have a significant effect on lipoprotein metabolism.


Journal of Clinical Investigation | 2008

Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis.

Hyung J. Chun; Ziad Ali; Yoko Kojima; Ramendra K. Kundu; Ahmad Y. Sheikh; Rani Agrawal; Lixin Zheng; Nicholas J. Leeper; Nathan Pearl; Andrew J. Patterson; Joshua Anderson; Philip S. Tsao; Michael J. Lenardo; Euan A. Ashley; Thomas Quertermous

Apelin and its cognate G protein-coupled receptor APJ constitute a signaling pathway with a positive inotropic effect on cardiac function and a vasodepressor function in the systemic circulation. The apelin-APJ pathway appears to have opposing physiological roles to the renin-angiotensin system. Here we investigated whether the apelin-APJ pathway can directly antagonize vascular disease-related Ang II actions. In ApoE-KO mice, exogenous Ang II induced atherosclerosis and abdominal aortic aneurysm formation; we found that coinfusion of apelin abrogated these effects. Similarly, apelin treatment rescued Ang II-mediated increases in neointimal formation and vascular remodeling in a vein graft model. NO has previously been implicated in the vasodepressor function of apelin; we found that apelin treatment increased NO bioavailability in ApoE-KO mice. Furthermore, infusion of an NO synthase inhibitor blocked the apelin-mediated decrease in atherosclerosis and aneurysm formation. In rat primary aortic smooth muscle cells, apelin inhibited Ang II-mediated transcriptional regulation of multiple targets as measured by reporter assays. In addition, we demonstrated by coimmunoprecipitation and fluorescence resonance energy transfer analysis that the Ang II and apelin receptors interacted physically. Taken together, these findings indicate that apelin signaling can block Ang II actions in vascular disease by increasing NO production and inhibiting Ang II cellular signaling.


Journal of Cellular Physiology | 2011

MicroRNA‐26a is a novel regulator of vascular smooth muscle cell function

Nicholas J. Leeper; Azad Raiesdana; Yoko Kojima; Hyung J. Chun; Junya Azuma; Lars Maegdefessel; Ramendra K. Kundu; Thomas Quertermous; Philip S. Tsao; Joshua M. Spin

Aberrant smooth muscle cell (SMC) plasticity has been implicated in a variety of vascular disorders including atherosclerosis, restenosis, and abdominal aortic aneurysm (AAA) formation. While the pathways governing this process remain unclear, epigenetic regulation by specific microRNAs (miRNAs) has been demonstrated in SMCs. We hypothesized that additional miRNAs might play an important role in determining vascular SMC phenotype. Microarray analysis of miRNAs was performed on human aortic SMCs undergoing phenotypic switching in response to serum withdrawal, and identified 31 significantly regulated entities. We chose the highly conserved candidate miRNA‐26a for additional studies. Inhibition of miRNA‐26a accelerated SMC differentiation, and also promoted apoptosis, while inhibiting proliferation and migration. Overexpression of miRNA‐26a blunted differentiation. As a potential mechanism, we investigated whether miRNA‐26a influences TGF‐β‐pathway signaling. Dual‐luciferase reporter assays demonstrated enhanced SMAD signaling with miRNA‐26a inhibition, and the opposite effect with miRNA‐26a overexpression in transfected human cells. Furthermore, inhibition of miRNA‐26a increased gene expression of SMAD‐1 and SMAD‐4, while overexpression inhibited SMAD‐1. MicroRNA‐26a was also found to be downregulated in two mouse models of AAA formation (2.5‐ to 3.8‐fold decrease, P < 0.02) in which enhanced switching from contractile to synthetic phenotype occurs. In summary, miRNA‐26a promotes vascular SMC proliferation while inhibiting cellular differentiation and apoptosis, and alters TGF‐β pathway signaling. MicroRNA‐26a represents an important new regulator of SMC biology and a potential therapeutic target in AAA disease. J. Cell. Physiol. 226: 1035–1043, 2011.


Science | 2008

Del-1, an Endogenous Leukocyte-Endothelial Adhesion Inhibitor, Limits Inflammatory Cell Recruitment

Eun Young Choi; Emmanouil Chavakis; Marcus Czabanka; Harald Langer; Line Fraemohs; Matina Economopoulou; Ramendra K. Kundu; Alessia Orlandi; Ying Yi Zheng; DaRue A. Prieto; Christie M. Ballantyne; Stephanie L. Constant; William C. Aird; Thalia Papayannopoulou; Carl G. Gahmberg; Mark C. Udey; Peter Vajkoczy; Thomas Quertermous; Stefanie Dimmeler; Christian Weber; Triantafyllos Chavakis

Leukocyte recruitment to sites of infection or inflammation requires multiple adhesive events. Although numerous players promoting leukocyte-endothelial interactions have been characterized, functionally important endogenous inhibitors of leukocyte adhesion have not been identified. Here we describe the endothelially derived secreted molecule Del-1 (developmental endothelial locus–1) as an anti-adhesive factor that interferes with the integrin LFA-1–dependent leukocyte-endothelial adhesion. Endothelial Del-1 deficiency increased LFA-1–dependent leukocyte adhesion in vitro and in vivo. Del-1–/– mice displayed significantly higher neutrophil accumulation in lipopolysaccharide-induced lung inflammation in vivo, which was reversed in Del-1/LFA-1 double-deficient mice. Thus, Del-1 is an endogenous inhibitor of inflammatory cell recruitment and could provide a basis for targeting leukocyte-endothelial interactions in disease.


American Journal of Physiology-endocrinology and Metabolism | 2010

Apelin is necessary for the maintenance of insulin sensitivity

Patrick Yue; Hong Jin; Marissa Aillaud; Alicia C. Deng; Junya Azuma; Tomoko Asagami; Ramendra K. Kundu; Gerald M. Reaven; Thomas Quertermous; Philip S. Tsao

The recently discovered peptide apelin is known to be involved in the maintenance of insulin sensitivity. However, questions persist regarding its precise role in the chronic setting. Fasting glucose, insulin, and adiponectin levels were determined on mice with generalized deficiency of apelin (APKO). Additionally, insulin (ITT) and glucose tolerance tests (GTT) were performed. To assess the impact of exogenously delivered apelin on insulin sensitivity, osmotic pumps containing pyroglutamated apelin-13 or saline were implanted in APKO mice for 4 wk. Following the infusion, ITT/GTTs were repeated and the animals euthanized. Soleus muscles were harvested and homogenized in lysis buffer, and insulin-induced Akt phosphorylation was determined by Western blotting. Apelin-13 infusion and ITTs/GTTs were also performed in obese diabetic db/db mice. To probe the underlying mechanism for apelins effects, apelin-13 was also delivered to cultured C2C12 myotubes. 2-[3H]deoxyglucose uptake and Akt phosphorylation were assessed in the presence of various inhibitors. APKO mice had diminished insulin sensitivity, were hyperinsulinemic, and had decreased adiponectin levels. Soleus lysates had decreased insulin-induced Akt phosphorylation. Administration of apelin to APKO and db/db mice resulted in improved insulin sensitivity. In C2C12 myotubes, apelin increased glucose uptake and Akt phosphorylation. These events were fully abrogated by pertussis toxin, compound C, and siRNA knockdown of AMPKalpha1 but only partially diminished by LY-294002 and not at all by L-NAME. We conclude that apelin is necessary for the maintenance of insulin sensitivity in vivo. Apelins effects on glucose uptake and Akt phosphorylation are in part mediated by a G(i) and AMPK-dependent pathway.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Endogenous regulation of cardiovascular function by apelin-APJ

David Charo; Michael Y Ho; Giovanni Fajardo; Masataka Kawana; Ramendra K. Kundu; Ahmad Y. Sheikh; Thomas P Finsterbach; Nicholas J. Leeper; Kavita V Ernst; Mary M. Chen; Yen-Dong Ho; Hyung J. Chun; Daniel Bernstein; Euan A. Ashley; Thomas Quertermous

Studies have shown significant cardiovascular effects of exogenous apelin administration, including the potent activation of cardiac contraction. However, the role of the endogenous apelin-APJ pathway is less clear. To study the loss of endogenous apelin-APJ signaling, we generated mice lacking either the ligand (apelin) or the receptor (APJ). Apelin-deficient mice were viable, fertile, and showed normal development. In contrast, APJ-deficient mice were not born in the expected Mendelian ratio, and many showed cardiovascular developmental defects. Under basal conditions, both apelin and APJ null mice that survived to adulthood manifested modest decrements in contractile function. However, with exercise stress both mutant lines demonstrated consistent and striking decreases in exercise capacity. To explain these findings, we explored the role of autocrine signaling in vitro using field stimulation of isolated left ventricular cardiomyocytes lacking either apelin or APJ. Both groups manifested less sarcomeric shortening and impaired velocity of contraction and relaxation with no difference in calcium transient. Taken together, these results demonstrate that endogenous apelin-APJ signaling plays a modest role in maintaining basal cardiac function in adult mice with a more substantive role during conditions of stress. In addition, an autocrine pathway seems to exist in myocardial cells, the ablation of which reduces cellular contraction without change in calcium transient. Finally, differences in the developmental phenotype between apelin and APJ null mice suggest the possibility of undiscovered APJ ligands or ligand-independent effects of APJ.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

Disruption of the Apelin-APJ System Worsens Hypoxia-Induced Pulmonary Hypertension

Suparna M. Chandra; Hedi Razavi; Jongmin Kim; Rani Agrawal; Ramendra K. Kundu; Vinicio de Jesus Perez; Roham T. Zamanian; Thomas Quertermous; Hyung J. Chun

Objective—The G-protein–coupled receptor APJ and its ligand apelin are highly expressed in the pulmonary vasculature, but their function in this vascular bed is unclear. We hypothesized that disruption of apelin signaling would lead to worsening of the vascular remodeling associated with pulmonary hypertension (PH). Methods and Results—We found that apelin-null mice developed more severe PH compared with wild-type mice when exposed to chronic hypoxia. Micro-computed tomography of the pulmonary arteries demonstrated significant pruning of the microvasculature in the apelin-null mice. Apelin-null mice had a significant reduction of serum nitrate levels. This was secondary to downregulation of endothelial nitric oxide synthase (eNOS), which was associated with reduced expression of Kruppel-like factor 2 (KLF2), a known regulator of eNOS expression. In vitro knockdown studies targeting apelin in human pulmonary artery endothelial cells demonstrated decreased eNOS and KLF2 expression, as well as impaired phosphorylation of AMP-activated kinase and eNOS. Moreover, serum apelin levels of patients with PH were significantly lower than those of controls. Conclusion—These data demonstrate that disruption of apelin signaling can exacerbate PH mediated by decreased activation of AMP-activated kinase and eNOS, and they identify this pathway as a potentially important therapeutic target for treatment of this refractory human disease.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Apelin prevents aortic aneurysm formation by inhibiting macrophage inflammation

Nicholas J. Leeper; Maureen M. Tedesco; Yoko Kojima; Geoffrey M. Schultz; Ramendra K. Kundu; Euan A. Ashley; Phillip Tsao; Ronald L. Dalman; Thomas Quertermous

Apelin is a potent inodilator with recently described antiatherogenic properties. We hypothesized that apelin might also attenuate abdominal aortic aneurysm (AAA) formation by limiting disease-related vascular wall inflammation. C57BL/6 mice implanted with osmotic pumps filled with apelin or saline were treated with pancreatic elastase to create infrarenal AAAs. Mice were euthanized for aortic PCR analysis or followed ultrasonographically and then euthanized for histological analysis. The cellular expression of inflammatory cytokines and chemokines in response to apelin was also assessed in cultured macrophages, smooth muscle cells, and fibroblasts. Apelin treatment resulted in diminished AAA formation, with a 47% reduction in maximal cross-sectional area (0.74 vs. 1.39 mm(2), P < 0.03) and a 57% reduction in macrophage infiltrate (113 vs. 261.3 cells/high-power field, P < 0.0001) relative to the saline-treated group. Apelin infusion was also associated with significantly reduced aortic macrophage colony-stimulating factor expression and decreased monocyte chemattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-1alpha, interleukin (IL)-6, and tumor necrosis factor (TNF)-alpha mean mRNA levels. Apelin stimulation of cultured macrophages significantly reduced MCP-1 and TNF-alpha mRNA levels relative to baseline (2.03- and 1.89-fold reduction, P < 0.03, respectively) but did not affect intimal adhesion molecule expression or medial or adventitial cell cytokine production. Apelin significantly reduces aneurysm formation in the elastase model of human AAA disease. The mechanism appears to be decreased macrophage burden, perhaps related to an apelin-mediated decrease in proinflammatory cytokine and chemokine activation.


Journal of Biological Chemistry | 2003

Targeted Disruption of Endothelial Cell-selective Adhesion Molecule Inhibits Angiogenic Processes in Vitro and in Vivo

Tatsuro Ishida; Ramendra K. Kundu; Eugene Yang; Ken-ichi Hirata; Yen Dong Ho; Thomas Quertermous

Endothelial cell-selective adhesion molecule (ESAM) is a member of the immunoglobulin receptor family that mediates homophilic interactions between endothelial cells. To address potential in vivo angiogenic functions of this molecule, mice lacking ESAM (ESAM–/–) were generated by gene-targeted deletion. ESAM–/– mice did not show overt morphological defects in the vasculature. To evaluate the role of ESAM in pathological angiogenesis, wild type (WT) and ESAM–/– mice were injected with melanoma and Lewis lung carcinoma cells. By 14 days after injection, tumor volumes of B16F10 and LL/2 in ESAM–/– mice were 48 and 37% smaller, respectively, compared with WT mice. Vascular density of the tumors, as determined by CD31 staining, was also decreased in the ESAM null animals. Matrigel plug assays showed less neovascularization in ESAM–/– mice than in WT mice. ESAM–/– endothelial cells exhibited less in vitro tube formation and decreased migration in response to basic fibroblast growth factor when compared with WT cells, and endothelial-like yolk sac cells engineered to overexpress ESAM showed accelerated tube formation in vitro. These in vitro and in vivo studies suggest that ESAM has a redundant functional role in physiological angiogenesis but serves a unique and essential role in pathological angiogenic processes such as tumor growth.


Endocrinology | 2011

Apelin Decreases Lipolysis via Gq, Gi, and AMPK-Dependent Mechanisms

Patrick Yue; Hong Jin; Shiming Xu; Marissa Aillaud; Alicia C. Deng; Junya Azuma; Ramendra K. Kundu; Gerald M. Reaven; Thomas Quertermous; Philip S. Tsao

The release of free fatty acids (FFAs) from adipocytes (i.e. lipolysis) is increased in obesity and is a contributory factor to the development of insulin resistance. A recently identified adipokine, apelin, is up-regulated in states of obesity. Although apelin is secreted by adipocytes, its functions in them remain largely unknown. To determine whether apelin affects lipolysis, FFA, glycerol, and leptin levels, as well as abdominal adiposity, were measured at baseline and after reintroduction of exogenous apelin in apelin-null mice. To examine apelins effects in vitro, isoproterenol-induced FFA/glycerol release, and hormone-sensitive lipase (HSL) and acetyl CoA carboxylase phosphorylation were investigated in 3T3-L1 cells and isolated wild-type adipocytes. Serum FFA, glycerol, and leptin concentrations, as well as abdominal adiposity, were significantly increased in apelin-null vs. wild-type mice; these changes were ameliorated in response to exogenous apelin. Apelin also reduced isoproterenol-induced FFA release in adipocytes isolated from wild-type but not APJ-null mice. In 3T3-L1 cells and isolated adipocytes, apelin attenuated isoproterenol-induced FFA/glycerol release. Apelins inhibition was reversed by pertussis toxin, the G(q) inhibitor glycoprotein antagonist 2A, and the AMP-activated protein kinase inhibitors compound C and dorsomorphin. Apelin increased HSL phosphorylation at Ser-565 and also abrogated isoproterenol-induced HSL phosphorylation at Ser-563. Notably, apelin increased acetyl CoA carboxylase phosphorylation, suggesting AMPK activation. In conclusion, apelin negatively regulates lipolysis. Its actions may be mediated by pathways involving G(q), G(i), and AMP-activated protein kinase.

Collaboration


Dive into the Ramendra K. Kundu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Maxson

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge