Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramendra K. Sahoo is active.

Publication


Featured researches published by Ramendra K. Sahoo.


dependable systems and networks | 2006

BlueGene/L Failure Analysis and Prediction Models

Yinglung Liang; Yanyong Zhang; Morris A. Jette; Anand Sivasubramaniam; Ramendra K. Sahoo

The growing computational and storage needs of several scientific applications mandate the deployment of extreme-scale parallel machines, such as IBMs BlueGene/L which can accommodate as many as 128 K processors. One of the challenges when designing and deploying these systems in a production setting is the need to take failure occurrences, whether it be in the hardware or in the software, into account. Earlier work has shown that conventional runtime fault-tolerant techniques such as periodic checkpointing are not effective to the emerging systems. Instead, the ability to predict failure occurrences can help develop more effective checkpointing strategies. Failure prediction has long been regarded as a challenging research problem, mainly due to the lack of realistic failure data from actual production systems. In this study, we have collected RAS event logs from BlueGene/L over a period of more than 100 days. We have investigated the characteristics of fatal failure events, as well as the correlation between fatal events and non-fatal events. Based on the observations, we have developed three simple yet effective failure prediction methods, which can predict around 80% of the memory and network failures, and 47% of the application I/O failures


dependable systems and networks | 2004

Failure data analysis of a large-scale heterogeneous server environment

Ramendra K. Sahoo; Mark S. Squillante; Anand Sivasubramaniam; Yanyong Zhang

The growing complexity of hardware and software mandates the recognition of fault occurrence in system deployment and management. While there are several techniques to prevent and/or handle faults, there continues to be a growing need for an in-depth understanding of system errors and failures and their empirical and statistical properties. This understanding can help evaluate the effectiveness of different techniques for improving system availability, in addition to developing new solutions. In this paper, we analyze the empirical and statistical properties of system errors and failures from a network of nearly 400 heterogeneous servers running a diverse workload over a year. While improvements in system robustness continue to limit the number of actual failures to a very small fraction of the recorded errors, the failure rates are significant and highly variable. Our results also show that the system error and failure patterns are comprised of time-varying behavior containing long stationary intervals. These stationary intervals exhibit various strong correlation structures and periodic patterns, which impact performance but also can be exploited to address such performance issues.


job scheduling strategies for parallel processing | 2004

Performance implications of failures in large-scale cluster scheduling

Yanyong Zhang; Mark S. Squillante; Anand Sivasubramaniam; Ramendra K. Sahoo

As we continue to evolve into large-scale parallel systems, many of them employing hundreds of computing engines to take on mission-critical roles, it is crucial to design those systems anticipating and accommodating the occurrence of failures. Failures become a commonplace feature of such large-scale systems, and one cannot continue to treat them as an exception. Despite the current and increasing importance of failures in these systems, our understanding of the performance impact of these critical issues on parallel computing environments is extremely limited. In this paper we develop a general failure modeling framework based on recent results from large-scale clusters and then we exploit this framework to conduct a detailed performance analysis of the impact of failures on system performance for a wide range of scheduling policies. Our results demonstrate that such failures can have a significant impact on the mean job response time and mean job slowdown under existing scheduling policies that ignore failures. We therefore investigate different scheduling mechanisms and policies to address these performance issues. Our results show that periodic checkpointing of jobs seems to do little to ease this problem. On the other hand, we demonstrate that information about the spatial and temporal correlation of failure occurrences can be very useful in designing a scheduling (job allocation) strategy to enhance system performance, with the former providing the greatest benefits.


dependable systems and networks | 2005

Filtering failure logs for a BlueGene/L prototype

Yinglung Liang; Yanyong Zhang; Anand Sivasubramaniam; Ramendra K. Sahoo; José E. Moreira; Manish Gupta

The growing computational and storage needs of several scientific applications mandate the deployment of extreme-scale parallel machines, such as IBMs BlueGene/L, which can accommodate as many as 128K processors. In this paper, we present our experiences in collecting and filtering error event logs from a 8192 processor BlueGene/L prototype at IBM Rochester, which is currently ranked #8 in the Top-500 list. We analyze the logs collected from this machine over a period of 84 days starting from August 26, 2004. We perform a three-step filtering algorithm on these logs: extracting and categorizing failure events; temporal filtering to remove duplicate reports from the same location; and finally coalescing failure reports of the same error across different locations. Using this approach, we can substantially compress these logs, removing over 99.96% of the 828,387 original entries, and more accurately portray the failure occurrences on this system.


international parallel and distributed processing symposium | 2004

Fault-aware job scheduling for BlueGene/L systems

Adam J. Oliner; Ramendra K. Sahoo; José E. Moreira; Manish Gupta; Anand Sivasubramaniam

Summary form only given. Large-scale systems like BlueGene/L are susceptible to a number of software and hardware failures that can affect system performance. We evaluate the effectiveness of a previously developed job scheduling algorithm for BlueGene/L in the presence of faults. We have developed two new job-scheduling algorithms considering failures while scheduling the jobs. We have also evaluated the impact of these algorithms on average bounded slowdown, average response time and system utilization, considering different levels of proactive failure prediction and prevention techniques reported in the literature. Our simulation studies show that the use of these new algorithms with even trivial fault prediction confidence or accuracy levels (as low as 10%) can significantly improve the performance of the BlueGene/L system.


international conference on data mining | 2007

Failure Prediction in IBM BlueGene/L Event Logs

Yinglung Liang; Yanyong Zhang; Hui Xiong; Ramendra K. Sahoo

Frequent failures are becoming a serious concern to the community of high-end computing, especially when the applications and the underlying systems rapidly grow in size and complexity. In order to develop effective fault-tolerant strategies, there is a critical need to predict failure events. To this end, we have collected detailed event logs from IBM BlueGene/L, which has 128 K processors, and is currently the fastest supercomputer in the world. In this study, we first show how the event records can be converted into a data set that is appropriate for running classification techniques. Then we apply classifiers on the data, including RIPPER (a rule-based classifier), Support Vector Machines (SVMs), a traditional Nearest Neighbor method, and a customized Nearest Neighbor method. We show that the customized nearest neighbor approach can outperform RIPPER and SVMs in terms of both coverage and precision. The results suggest that the customized nearest neighbor approach can be used to alleviate the impact of failures.


international conference on supercomputing | 2006

Cooperative checkpointing: a robust approach to large-scale systems reliability

Adam J. Oliner; Larry Rudolph; Ramendra K. Sahoo

Cooperative checkpointing increases the performance and robustness of a system by allowing checkpoints requested by applications to be dynamically skipped at runtime. A robust system must be more than merely resilient to failures; it must be adaptable and flexible in the face of new and evolving challenges. A simulation-based experimental analysis using both probabilistic and harvested failure distributions reveals that cooperative checkpointing enables an application to make progress under a wide variety of failure distributions that periodic checkpointing lacks the flexibility to handle. Cooperative checkpointing can be easily implemented on top of existing application-initiated checkpointing mechanisms and may be used to enhance other reliability techniques like QoS guarantees and fault-aware job scheduling. The simulations also support a number of theoretical predictions related to cooperative checkpointing, including the non-competitiveness of periodic checkpointing.


high-performance computer architecture | 2006

High performance file I/O for the Blue Gene/L supercomputer

Hao Yu; Ramendra K. Sahoo; C. Howson; George S. Almasi; José G. Castaños; Manish Gupta; José E. Moreira; Jeffrey J. Parker; Thomas Eugene Engelsiepen; Robert B. Ross; Rajeev Thakur; Robert Latham; William Gropp

Parallel I/O plays a crucial role for most data-intensive applications running on massively parallel systems like Blue Gene/L that provides the promise of delivering enormous computational capability. We designed and implemented a highly scalable parallel file I/O architecture for Blue Gene/L, which leverages the benefit of the hierarchical and functional partitioning design of the system software with separate computational and I/O cores. The architecture exploits the scalability aspect of GPFS (General Parallel File System) at the backend, while using MPI I/O as an interface between the application I/O and the file system. We demonstrate the impact of our high performance I/O solution for Blue Gene/L with a comprehensive evaluation that consists of a number of widely used parallel I/O benchmarks and I/O intensive applications. Our design and implementation is not only able to deliver at least one order of magnitude speed up in terms of I/O bandwidth for a real-scale application HOMME (achieving aggregate bandwidth of 1.8 GB/Sec and 2.3 GB/Sec for write and read accesses, respectively), but also supports high-level parallel I/O data interfaces such as parallel HDF5 and parallel NetCDF scaling up to a large number of processors.


international parallel and distributed processing symposium | 2005

Performance implications of periodic checkpointing on large-scale cluster systems

Adam J. Oliner; Ramendra K. Sahoo; José E. Moreira; Meeta Sharma Gupta

Large-scale systems like BlueGene/L are susceptible to a number of software and hardware failures that can affect system performance. Periodic application checkpointing is a common technique for mitigating the amount of work lost due to job failures, but its effectiveness under realistic circumstances has not been studied. In this paper, we analyze the system-level performance of periodic application checkpointing using parameters similar to those projected for BlueGene/L systems. Our results reflect simulations on a toroidal interconnect architecture, using a real job log from a machine similar to BlueGene/L, and with a real failure distribution from a large-scale cluster. Our simulation studies investigate the impact of parameters such as checkpoint overhead and checkpoint interval on a number of performance metrics, including bounded slowdown, system utilization, and total work lost. The results suggest that periodic checkpointing may not be an effective way to improve the average bounded slowdown or average system utilization metrics, though it reduces the amount of work lost due to failures. We show that overzealous checkpointing with high overhead can amplify the effects of failures. The study also suggests that new metrics and checkpointing techniques may be required to effectively handle job failures on large-scale machines like BlueGene/L.


Ibm Journal of Research and Development | 2005

Blue Gene/L programming and operating environment

José E. Moreira; George S. Almasi; Charles J. Archer; Ralph Bellofatto; Peter Bergner; José R. Brunheroto; Michael Brutman; José G. Castaños; Paul G. Crumley; Manish Gupta; Todd Inglett; Derek Lieber; David Limpert; Patrick McCarthy; Mark Megerian; Mark P. Mendell; Michael Mundy; Don Reed; Ramendra K. Sahoo; Alda Sanomiya; Richard Shok; Brian E. Smith; Greg Stewart

With up to 65,536 compute nodes and a peak performance of more than 360 teraflops, the Blue Gene®/L (BG/L) supercomputer represents a new level of massively parallel systems. The system software stack for BG/L creates a programming and operating environment that harnesses the raw power of this architecture with great effectiveness. The design and implementation of this environment followed three major principles: simplicity, performance, and familiarity. By specializing the services provided by each component of the system architecture, we were able to keep each one simple and leverage the BG/L hardware features to deliver high performance to applications. We also implemented standard programming interfaces and programming languages that greatly simplified the job of porting applications to BG/L. The effectiveness of our approach has been demonstrated by the operational success of several prototype and production machines, which have already been scaled to 16,384 nodes.

Collaboration


Dive into the Ramendra K. Sahoo's collaboration.

Researchain Logo
Decentralizing Knowledge