Ramesh Prasad
Indian Association for the Cultivation of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ramesh Prasad.
Journal of Biomolecular Structure & Dynamics | 2018
Ramesh Prasad; Prosenjit Sen
Tissue factor (TF)-mediated factor VII (FVII) activation and a subsequent proteolytic TF-FVIIa binary complex formation is the key step initiating the coagulation cascade, with implications in various homeostatic and pathologic scenarios. TF binding allosterically modifies zymogen-like free FVIIa to its highly catalytically active form. As a result of unresolved crystal structure of the full-length TF1-263-FVIIa binary complex and free FVIIa, allosteric alterations in FVIIa following its binding to full-length TF and the consequences of these on function are not entirely clear. The present study aims to map and identify structural alterations in FVIIa and TF resulting from full-length TF binding to FVIIa and the key events responsible for enhanced FVIIa activity in coagulation. We constructed the full-length TF1-263-FVIIa membrane bound complex using computational modeling and subjected it to molecular dynamics (MD) simulations. MD simulations showed that TF alters the structure of each domain of FVIIa and these combined alterations contribute to enhanced TF-FVIIa activity. Detailed, domain-wise investigation revealed several new non-covalent interactions between TF and FVIIa that were not found in the truncated soluble TF-FVIIa crystal structure. The structural modulation of each FVIIa domain imparted by TF indicated that both inter and intra-domain communication is crucial for allosteric modulation of FVIIa. Our results suggest that these newly formed interactions can provide additional stability to the protease domain and regulate its activity profile by governing catalytic triad (CT) orientation and localization. The unexplored newly formed interactions between EGF2 and TF provides a possible explanation for TF-induced allosteric activation of FVIIa.
Journal of Biological Chemistry | 2017
Abhishek Roy; Shabbir Ahmed Ansari; Kaushik Das; Ramesh Prasad; Anindita Bhattacharya; Suman Mallik; Ashis Mukherjee; Prosenjit Sen
Cell migration and invasion are very characteristic features of cancer cells that promote metastasis, which is one of the most common causes of mortality among cancer patients. Emerging evidence has shown that coagulation factors can directly mediate cancer-associated complications either by enhancing thrombus formation or by initiating various signaling events leading to metastatic cancer progression. It is well established that, apart from its distinct role in blood coagulation, coagulation factor FVIIa enhances aggressive behaviors of breast cancer cells, but the underlying signaling mechanisms still remain elusive. To this end, we investigated FVIIas role in the migration and invasiveness of the breast cancer cell line MDA-MB-231. Consistent with previous observations, we observed that FVIIa increased the migratory and invasive potential of these cells. We also provide molecular evidence that protease-activated receptor 2 activation followed by PI3K-AKT activation and GSK3β inactivation is involved in these processes and that β-catenin, a well known tumor-regulatory protein, contributes to this signaling pathway. The pivotal role of β-catenin was further indicated by the up-regulation of its downstream targets cyclin D1, c-Myc, COX-2, MMP-7, MMP-14, and Claudin-1. β-Catenin knockdown almost completely attenuated the FVIIa-induced enhancement of breast cancer migration and invasion. These findings provide a new perspective to counteract the invasive behavior of breast cancer, indicating that blocking PI3K-AKT pathway-dependent β-catenin accumulation may represent a potential therapeutic approach to control breast cancer.
Scientific Reports | 2018
Kaushik Das; Ramesh Prasad; Sreetama Roy; Ashis Mukherjee; Prosenjit Sen
Metastasis, the hallmark of cancer propagation is attributed by the modification of phenotypic/functional behavior of cells to break attachment and migrate to distant body parts. Cancer cell-secreted microvesicles (MVs) contribute immensely in disease propagation. These nano-vesicles, generated from plasma membrane outward budding are taken up by nearby healthy cells thereby inducing phenotypic alterations in those recipient cells. Protease activated receptor 2 (PAR2), activated by trypsin, also contributes to cancer progression by increasing metastasis, angiogenesis etc. Here, we report that PAR2 activation promotes pro-metastatic MVs generation from human breast cancer cell line, MDA-MB-231. Rab5a, located at the plasma membrane plays vital roles in MVs biogenesis. We show that PAR2 stimulation promotes AKT phosphorylation which activates Rab5a by converting inactive Rab5a-GDP to active Rab5a-GTP. Active Rab5a polymerizes actin which critically regulates MVs shedding. Not only MVs generation, has this Rab5a activation also promoted cell migration and invasion. We reveal that Rab5a is over-expressed in human breast tumor specimen and contributes MVs generation in those patients. The involvement of p38 MAPK in MVs-induced cell metastasis has also been highlighted in the present study. Blockade of Rab5a activation can be a potential therapeutic approach to restrict MVs shedding and associated breast cancer metastasis.
Biomedicine & Pharmacotherapy | 2018
Kaushik Das; Ramesh Prasad; Shabbir Ahmed Ansari; Abhishek Roy; Ashis Mukherjee; Prosenjit Sen
AIMS Cell invasion is attributed to the synthesis and secretion of proteolytically active matrix-metalloproteinases (MMPs) by tumor cells to degrade extracellular matrix (ECM) and promote metastasis. The role of protease-activated receptor 2 (PAR2) in human breast cancer migration/invasion via MMP-2 up-regulation remains ill-defined; hence we investigated whether TF-FVIIa/trypsin-mediated PAR2 activation induces MMP-2 expression in human breast cancer. MAIN METHODS MMP-2 expression and the signaling mechanisms were analyzed by western blotting and RT-PCR. MMP-2 activity was measured by gelatin zymography. Cell invasion was analyzed by transwell invasion assay whereas; wound healing assay was performed to understand the cell migratory potential. KEY FINDINGS Here, we highlight that TF-FVIIa/trypsin-mediated PAR2 activation leads to enhanced MMP-2 expression in human breast cancer cells contributing to tumor progression. Knock-down of PAR2 abrogated TF-FVIIa/trypsin-induced up-regulation of MMP-2. Again, genetic manipulation of AKT or inhibition of NF-ĸB suggested that PAR2-mediated enhanced MMP-2 expression is dependent on the PI3K-AKT-NF-ĸB pathway. We also reveal that TF, PAR2, and MMP-2 are over-expressed in invasive breast carcinoma tissues as compared to normal. Knock-down of MMP-2 significantly impeded TF-FVIIa/trypsin-induced cell invasion. Further, we report that MMP-2 activates p38 MAPK-MK2-HSP27 signaling axis that leads to actin polymerization and induces cell migration. Pharmacological inhibition of p38 MAPK or MK2 attenuates MMP-2-induced cell migration. SIGNIFICANCE The study delineates a novel signaling pathway by which PAR2-induced MMP-2 expression regulates human breast cancer cell migration/invasion. Understanding these mechanistic details will certainly help to identify crucial targets for therapeutic interventions in breast cancer metastasis.
Molecular Carcinogenesis | 2018
Kaushik Das; Ramesh Prasad; Arpana Singh; Anindita Bhattacharya; Abhishek Roy; Suman Mallik; Ashis Mukherjee; Prosenjit Sen
Apart from blood coagulation, coagulation proteases are involved inextricably in cancer progression/propagation via intra/inter‐cellular signaling, mediated predominantly by protease‐activated receptors (PARs). Microvesicles (MVs), a plasma membrane shredded component, has recently been identified as an important contributor to human breast cancer metastasis. However, the role of PAR2 in promoting MVs generation from breast cancer cells remains largely unexplored. The objective of this study is to investigate whether coagulation protease‐mediated human breast cancer propagation commences via MVs and also to decipher the underlying signaling mechanism. Here, we elicited that coagulation factor‐FVIIa and Trypsin activates PAR2, which governs MVs shedding from MDAMB231 cells by altering actomyosin dynamics. Treatment of cells with PAR2 activators facilitate MVs generation by activating three independent (MAPK, P38, and Rho) signaling cascades. MAPK, signals through activating MLCK followed by MLC phosphorylation to alter myosin organization whereas, P38 reorganizes actin dynamics by the sequential activation of MK2 and HSP27. RhoA‐dependent ROCK‐II activation again contributes to remodeling myosin II activity. Further, both our in vitro and in vivo analyses showed that these MVs potentiate invasive and migratory property to the recipient cells. Breast cancer patients blood show an elevation of TF‐bearing, pro‐metastatic MVs than normal. These findings give an insight into the detailed signaling mechanism involved in the production of MVs with transforming ability from PAR2‐activated human breast cancer cells. Understanding these mechanistic details will certainly help to identify crucial targets for therapeutic interventions in MVs‐associated human breast cancer metastasis.
Journal of Biomolecular Structure & Dynamics | 2018
Ramesh Prasad; Suparna Banerjee; Prosenjit Sen
Abstract Two distinct populations, active and cryptic forms of tissue factor (TF), reside on the cell surface. Apart from phospholipid contribution, various models have been introduced to explain decryption/encryption of TF. The proposed model, the switching of Cys186–Cys209 bond of TF, has become the matter of controversy. However, it is well accepted that this disulfide has an immense influence upon ligand factor VIIa (FVIIa) for its binding. However, molecular level understanding for this remains unveiled due to lack of detailed structural information. In this regard, we have performed the molecular dynamic study of membrane-bound TF/TF–FVIIa in both the forms (±Cys186–Cys209 allosteric disulfide bond), individually. Dynamic study depicts that disulfide bond provides structural rigidity of TF in both free and ligand-bound forms. This disulfide bond also governs the conformation of FVIIa structure as well as the binding affinity of FVIIa toward TF. Significant differences in lipid–protein interaction profiles of both the forms of TF in the complex were observed. Two forms of TF, oxidized and reduced, have different structural conformation and behave differentially toward its ligand FVIIa. This disulfide bond not only alters the conformation of GLA domain of FVIIa in the vicinity but allosterically regulates the conformation of the distantly located FVIIa protease domain. We suggest that the redox status of the disulfide bond also governs the lipid-mediated interactions with both TF and FVIIa. Communicated by Ramaswamy H. Sarma
Integrative Biology | 2018
Ramesh Prasad; Prosenjit Sen
Endothelial cell protein C receptor (EPCR), the cellular receptor for protein C (PC), facilitates PC activation through the thrombin/thrombomodulin complex and regulates thrombin generation. Under pathophysiological conditions like sepsis, the interactions between EPCR and PC become impaired. Previous studies have demonstrated that the EPCR contains a phospholipid in the antigen-binding groove that is responsible for the structural stability of the EPCR and for PC recognition. However, an understanding at the atomic level during ligand recognition is not fully developed. Molecular dynamics simulations along with potential of mean force (PMF) calculations were carried out in order to provide molecular insight into the dynamics and free energies of EPCR-PC in the absence/presence of phospholipid, namely lysophosphatidylcholine (lysoPCh) and phosphatidylcholine (PCh) in the antigen-binding groove of the EPCR. Our data reveal that the presence of lipid maintains the optimal conformation of the EPCR for PC binding. PMF data further suggest that the PCh system is the most stable in comparison with the other systems (lysoPCh and no lipid). With regards to the two hydrophobic tails of PCh, one lipid tail regulates EPCR conformation while the other promotes ligand recognition by interacting with the keel residue (Phe-4) of PC. Due to the lack of one hydrophobic tail for the lysoPCh system, the EPCR conformation is retained but the affinity of the EPCR towards the ligand (PC) is reduced. Our studies for the first time explore the possible mode of ligand recognition by the EPCR via the involvement of phosphatidylcholine within its hydrophobic groove. The present work provides insight into PCh-dependent ligand recognition and hence regulation of the protein C/EPCR complex formation.
ACS Medicinal Chemistry Letters | 2018
Suman Mallik; Ramesh Prasad; Anindita Bhattacharya; Prosenjit Sen
Natural phosphatidylserine (PS), which contains two chiral centers, enhances blood coagulation. However, the process by which PS enhanced blood coagulation is not completely understood. An efficient and flexible synthetic route has been developed to synthesize all of the possible stereoisomers of PS. In this study, we examined the role of PS chiral centers in modulating the activity of the tissue factor (TF)-factor VIIa coagulation initiation complex. Full length TF was relipidated with phosphatidylcholine, and the synthesized PS isomers were individually used to estimate the procoagulant activity of the TF-FVIIa complex via a FXa generation assay. The results revealed that the initiation complex activity was stereoselective and had increased sensitivity to the configuration of the PS glycerol backbone due to optimal protein-lipid interactions.
Archive | 2017
Abhishek Roy; Ramesh Prasad; Anindita Bhattacharya; Kaushik Das; Prosenjit Sen
Since a century ago, an intricate relationship exists between cancer progression and thromboembolism. In various case studies, thromboembolic complications have been found to maintain an intricate relationship with the progression of various tumours like breast, lung, colon and glioblastoma. Moreover, coagulation factors have also been reported to be involved for metastatic augmentation complications in cancer patients with elevated levels of complication in cancer-associated thrombosis. Production and protease activity of various coagulation factors like thrombin and tissue factor (TF)-FVIIa complex affect tumour progression and propagation actively. TF exerts both coagulant as well as PAR2-dependent cancerous activity by eliciting various cell survival signalling pathways, like P42/44MAPK and PI3K/AKT. However, the molecular elucidation of the role of these coagulation factors in cancer-associated thrombosis and metastatic progression has not been understood till date.
Archive | 2017
Ramesh Prasad; Abhishek Roy; Prosenjit Sen
Activated protein C is an intrinsic cytoprotective, anti-inflammatory, and anticoagulant factor. It acts as an active therapeutic molecule against the progression of number of systemic disorders. APC performs majority of its cell survival and homeostatic activities through binding with EPCR and activation of PAR1. Future research on the multifunctionality of APC protein may provide a novel insight into the mechanisms and interrelation of various coagulation and systemic disorders to provide an improved pathophysiological therapeutic approach to diseases.