Ramesh Subbiah
Korea Institute of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ramesh Subbiah.
Carbohydrate Polymers | 2012
Ramesh Subbiah; Prakash Ramalingam; Subramaniyan Ramasundaram; Do Yang Kim; Kwideok Park; Mohan K. Ramasamy; Kyoung Jin Choi
Hepatitis B virus surface antigen (HBsAg) loaded N,N,N-trimethyl chitosan nanoparticles (N-TMC NPs) were formulated and studied for controlled intranasal delivery. The size and surface properties of the NPs can be tuned by modifying the concentration of N-TMC and found to be 66±13, 76±9 nm for 0.25 and 0.5 wt.% respectively. Loading of 380 and 760 μl of HBsAg yielded 143±33, 259±47 nm sized spherical N-TMC NPs with highest loading efficiency and capacity of 90-93%, and 96-97% respectively. In vitro drug release analysis ensured 93% cumulative release of HBsAg antigen over prolonged period (43 days). In vivo immunological study was performed using 6-8 weeks old female BALB mice and reveals adjuvants efficiency of NPs for antigen is highly stable and better than standard. Obtained results show that N-TMC NPs can be extensively used in controlled intra nasal delivery to treat various diseases including hepatitis B and allergic rhinitis.
Small | 2013
Dong Hoon Choi; Ramesh Subbiah; Ik Hwan Kim; Dong Keun Han; Kwideok Park
An optimized electrodropping system produces homogeneous core-shell microcapsules (C-S MCs) by using poly(L-lactic-co-glycolic acid) (PLGA) and alginate. Fluorescence imaging clearly shows the C-S domain in the MC. For release control, the use of high-molecular-weight PLGA (HMW 270 000) restrains the initial burst release of protein compared to that of low-MW PLGA (LMW 40 000). Layer-by-layer (LBL) assembly of chitosan and alginate on MCs is also useful in controlling the release profile of biomolecules. LBL (7-layer) treatment is effective in suppressing the initial burst release of protein compared to no LBL (0-layer). The difference of cumulative albumin release between HMW (7-layer LBL) and LMW (0-layer LBL) PLGA is determined to be more than 40% on day 5. When dual angiogenic growth factors (GFs), such as platelet-derived GF (PDGF) and vascular endothelial GF (VEGF), are encapsulated separately in the core and shell domains, respectively, the VEGF release rate is much greater than that of PDGF, and the difference of the cumulative release percentage between the two GFs is about 30% on day 7 with LMW core PLGA and more than 45% with HMW core PLGA. As for the angiogenic potential of MC GFs with human umbilical vein endothelial cells (HUVECs), the fluorescence signal of CD31+ suggests that the angiogenic sprout of ECs is more active in MC-mediated GF delivery than conventional GF delivery, and this difference is significant, based on the number of capillary branches in the unit area. This study demonstrates that the fabrication of biocompatible C-S MCs is possible, and that the release control of biomolecules is adjustable. Furthermore, MC-mediated GFs remain in an active form and can upregulate the angiogenic activity of ECs.
Langmuir | 2011
Murugan Veerapandian; Ramesh Subbiah; Guei-Sam Lim; Sung Ha Park; Kyusik Yun; Min-Ho Lee
Cubelike microstructures of glucosamine-functionalized copper (GlcN-CuMCs) have been fabricated by the integration of injection pump and ultrasonochemistry. Although bulk microstructures and the nanostructure of metallic copper exhibit distinct applications, the amino sugar surface-functionalized copper is almost biocompatible and exhibits advanced features such as more crystallinity, high thermal stability, and electrochemical feasibility toward biomolecule (C-reactive protein, CRP) detection. An electrochemical test of this GlcN-CuMCs was demonstrated by immobilization on a conventional gold-PCB (Au-PCB) electrode. The combination of a biointerface membrane, from glucosamine functionalization, and electroactive sites of metallic copper provides a very efficient electrochemical response against various concentration of CRP. A perfect scaling of steady-state currents with r(2) values of 0.9862 (I(pa)) and 0.9972 (I(pc)) indicate the promise of this kind of biofunctionalized microstructure electrode for many surface and interface applications.
Biometals | 2012
Sathya Sadhasivam; Parthasarathi Shanmugam; Murugan Veerapandian; Ramesh Subbiah; Kyusik Yun
The fabrication of reliable, green chemistry processes for nanomaterial synthesis is an important aspect of nanotechnology. The biosynthesis of single-pot room-temperature reduction of aqueous chloroaurate ions by Streptomyces hygroscopicus cells has been reported to facilitate the development of an industrially viable greener methodology for the synthesis of technologically important gold nanoparticles (AuNPs). Multidimensional AuNPs are generated via the manipulation of key growth parameters, including solution pH and reaction time. The synthesized nanostructures are characterized by UV/Vis and energy dispersive X-ray analysis studies. Particle morphology is characterized by HRTEM, FE-SEM and BioAFM. Additionally, we have demonstrated the electrochemical and antibacterial properties of AuNPs via cyclic voltammetry analysis and a minimal inhibitory concentration assay. Owing to the drawbacks of chemical synthesis, a biological synthesis method has been developed to generate biocompatible, inexpensive and eco-friendly size-controlled nanoparticles.
Biomedical Materials | 2014
Ramesh Subbiah; Ping Du; Se Young Van; Muhammad Suhaeri; Mintai P. Hwang; Kangwon Lee; Kwideok Park
An artificial matrix (Fn-Tigra), consisting of graphene oxide (GO) and fibronectin (Fn), is developed on pure titanium (Ti) substrates via an electrodropping technique assisted with a custom-made coaxial needle. The morphology and topography of the resulting artificial matrix is orderly aligned and composed of porous microcavities. In addition, Fn is homogenously distributed and firmly bound onto GO as determined via immunofluorescence and elemental mapping, respectively. The artificial matrix is moderately hydrophobic (63.7°), and exhibits an average roughness of 546 nm and a Youngs modulus (E) of approximately 4.8 GPa. The biocompatibility, cellular behavior, and osteogenic potential of preosteoblasts on Fn-Tigra are compared to those of cells cultured on Ti and Ti-GO (Tigra). Cell proliferation and viability are significantly higher on Fn-Tigra and Tigra than that of cells grown on Ti. Focal adhesion molecule (vinculin) expression is highly activated at the central and peripheral area of preosteoblasts when cultured on Fn-Tigra. Furthermore, we demonstrate enhanced in vitro osteogenic differentiation of preosteoblasts cultured on Fn-Tigra over those cultured on bare Ti, as determined via Alizarin red and von Kossa staining, and the analysis of osteocalcin, type I collagen, alkaline phosphatase activity, and calcium contents. Finally, we investigate the biophysical and biomechanical properties of the cells using AFM. While the height and roughness of preosteoblasts increased with time, cell surface area decreased during in vitro osteogenesis over 2 weeks. In addition, the E of cells cultured on Tigra and Fn-Tigra increase in a statistically significant and time-dependent manner by 30%, while those cultured on bare Ti retain a relatively consistent E. In summary, we engineer a biocompatible artificial matrix (Fn-Tigra) capable of osteogenic induction and consequently demonstrate its potential in bone tissue engineering applications.
Advanced Healthcare Materials | 2015
Ramesh Subbiah; Mintai Peter Hwang; Se Young Van; Sun Hee Do; Hansoo Park; Kangwon Lee; Sang Heon Kim; Kyusik Yun; Kwideok Park
Growth factors (GFs) are major biochemical cues for tissue regeneration. Herein, a novel dual GF delivery system is designed composed of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and alginate microcapsules (MCs) via an electrodropping method. While bone morphogenetic protein (BMP)-2 is encapsulated in the PLGA NPs, vascular endothelial growth factor (VEGF) is included in the alginate MCs, where BMP-2-loaded PLGA NPs are entrapped together in the fabrication process. The initial loading efficiencies of BMP-2 and VEGF are 78% ± 3.6% and 43% ± 1.7%, respectively. When our dual GF-loaded MCs are assessed for in vitro osteogenesis of umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) on 2D and 3D environment, MCs contribute to much better UCB-MSCs osteogenesis as confirmed by von Kossa staining, immunofluorescence (osteocalcin, collagen 1), calcium content measurement, and osteogenic markers expression. In addition, when dual GF-encapsulated MCs are combined with collagen and then applied to 8 mm diameter rat calvarial defect model, the positive effects on vascularized bone regeneration are much more pronounced; micro computed tomography (CT) and histology analyses exhibit 82.3% bone healing coupled with 12.6% vessel occupied area. Put together, current study indicates a synergistic effect of BMP-2/VEGF and highlights the great potential of dual GF delivery modality (PLGA NPs-in-MC) for regeneration of vascularized bone.
Journal of the Royal Society Interface | 2013
Ramesh Subbiah; Subramaniyan Ramasundaram; Ping Du; Kim Hyojin; Dongkyung Sung; Kwideok Park; Nae-Eung Lee; Kyusik Yun; Kyoung Jin Choi
Hybrids consisting of carboxylated, single-walled carbon nanotube (c-SWNT)–silver nanoparticles (AgNPs)-DNA–poly vinyl alcohol (PVA) are synthesized via sequential functionalization to mimic the theragnostic (therapy and diagnosis) system. Carboxylation of SWNT has minimized the metal impurities with plenty of –COOH groups to produce hybrid (c-SWNT-AgNPs). The hybrid is further wrapped with DNA (hybrid-DNA) and encapsulated with PVA as hybrid composite (HC). Materials were tested against human alveolar epithelial cells (A549), mouse fibroblasts cells (NIH3T3) and human bone marrow stromal cells (HS-5). The composition-sensitive physico-chemical interactions, biophysics and biomechanics of materials-treated cells are evaluated. The cell viability was improved for HC, hybrid-PVA and c-SWNT when compared with SWNT and hybrid. SWNT and hybrid showed cell viability less than 60% at high dose (40 µg ml−1) and hybrid-PVA and HC retained 80% or more cell viability. The treatment of hybrid nanomaterials considerably changed cell morphology and intercellular interaction with respect to the composition of materials. Peculiarly, PVA-coated hybrid was found to minimize the growth of invadopodia of A549 cells, which is responsible for the proliferation of cancer cells. Surface roughness of cells increased after treatment with hybrid, where cytoplasmic regions specifically showed higher roughness. Nanoindentation results suggest that changes in biomechanics occurred owing to possible internalization of the hybrid. The changes in force spectra of treated cells indicated a possible greater interaction between the cells and hybrid with distinct stiffness and demonstrated the surface adherence and internalization of hybrid on or inside the cells.
Nanoscale | 2013
Monica Samal; Priyaranjan Mohapatra; Ramesh Subbiah; Chang-Lyoul Lee; Benayad Anass; Jang Ah Kim; Tae Sung Kim; Dong Kee Yi
Our recent studies on metal-organic nanohybrids based on alkylated graphene oxide (GO), reduced alkylated graphene oxide (RGO) and InP/ZnS core/shell quantum dots (QDs) are presented. The GO alkylated by octadecylamine (ODA) and the QD bearing a dodecane thiol (DDT) ligand are soluble in toluene. The nanocomposite alkylated-GO-QD (GOQD) is readily formed from the solution mixture. Treatment of the GOQD composite with hydrazine affords a reduced-alkylated-GO-QD (RGOQD) composite. The structure, morphology, photophysical and electrical properties of GOQDs and RGOQDs are studied. The micro-FTIR and Raman studies demonstrate evidence of the QD interaction with GO and RGO through facile intercalation of the alkyl chains. The field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) images of the GOQD composite show heaps of large QD aggregates piled underneath the GO sheet. Upon reduction to RGOQDs, the QDs become evenly distributed on the graphene bed and the size of the clusters significantly decreases. This also facilitates closer proximity of the QDs to the graphene domains by altering the optoelectronic properties of the RGOQDs. The X-ray photoelectron spectroscopy (XPS) results confirm QDs being retained in the composites, though a small elemental composition change takes place. The XPS and the fluorescence spectra show the presence of an In(Zn)P alloy while the X-ray diffraction (XRD) results show characteristics of the tetragonal indium. The photoluminescence (PL) quenching of QDs in GOQD and RGOQD films determined by the time correlated single photon counting (TCSPC) experiment demonstrates almost complete fluorescence quenching in RGOQDs. The conductance studies demonstrate the differences between GOQDs and RGOQDs. Investigation on the metal-oxide-semiconductor field-effect transistor (nMOSFET) characteristics shows the composite to exhibit p-type channel material properties. The RGOQD exhibits much superior electrical conductance as a channel material compared to the GOQD due to the close proximity of the QDs in the RGOQD to the graphene surface. The transfer characteristics, memory properties, and on/off ratios of the devices are determined. A mechanism has been proposed with reference to the Fermi energies of the composites estimated from the ultraviolet photoelectron spectroscopy (UPS) studies.
Macromolecular Bioscience | 2016
Ramesh Subbiah; Mintai P. Hwang; Ping Du; Muhammad Suhaeri; Jun Ha Hwang; Jeong Ho Hong; Kwideok Park
Extracellular matrix (ECM), comprised of multiple cues (chemical, physiomechanical), provides a niche for cell attachment, migration, and differentiation. Given that different cells give rise to distinct physiological milieus, the role of such microenvironmental cues on various cells has been well-studied. Particularly, the effect of various physiomechanical factors on stem cell lineage has been resolved into individual variables via ECM protein-coated polymeric systems. Such platforms, while providing a reductionist approach as a means to remove any confounding factors, unfortunately fall short of capturing the full biophysical scope of the natural microenvironment. Herein, the use of a cell-derived ECM platform is reported in which its crosslinking density is tunable; varying concentrations (0, 0.5, 1, 2% w/v) of genipin (GN), a naturally derived crosslinker with low toxicity, are used to form inter- and intrafibril crosslinks. ECM crosslinking produces GN concentration-dependent changes in ECM stiffness (<0.1-9.4 kPa), roughness (96-280 nm), and chemical composition (100-60% amine content). The effect of the various crosslinked ECM profiles on human mesenchymal stem cell differentiation, vascular morphogenesis, and cardiomyogenesis are then evaluated. Taken together, this study demonstrates that tunable crosslinked cell-derived ECM platform is capable of providing a comprehensive physiological platform, and envisions its use in future tissue engineering applications.
Biomaterials | 2016
Mintai P. Hwang; Ramesh Subbiah; In Gul Kim; Kyung Eun Lee; Jimin Park; Sang Heon Kim; Kwideok Park
Osteoblast and osteoclast communication (i.e. osteocoupling) is an intricate process, in which the biophysical profile of bone ECM is an aggregate product of their activities. While the effect of microenvironmental cues on osteoblast and osteoclast maturation has been resolved into individual variables (e.g. stiffness or topography), a single cue can be limited with regards to reflecting the full biophysical scope of natural bone ECM. Additionally, the natural modulation of bone ECM, which involves collagenous fibril and elastin crosslinking via lysyl oxidase, has yet to be reflected in current synthetic platforms. Here, we move beyond traditional substrates and use cell-derived ECM to examine individual and coupled osteoblast and osteoclast behavior on a physiological platform. Specifically, preosteoblast-derived ECM is crosslinked with genipin, a biocompatible crosslinker, to emulate physiological lysyl oxidase-mediated ECM crosslinking. We demonstrate that different concentrations of genipin yield changes to ECM density, stiffness, and roughness while retaining biocompatibility. By approximating various bone ECM profiles, we examine how individual and coupled osteoblast and osteoclast behavior are affected. Ultimately, we demonstrate an increase in osteoblast and osteoclast differentiation on compact and loose ECM, respectively, and identify ECM crosslinking density as an underlying force in osteocoupling behavior.