Rami Yaka
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rami Yaka.
Neuron | 2003
Mark A. Ungless; Vineeta Singh; Tara L Crowder; Rami Yaka; Dorit Ron; Antonello Bonci
Stress increases addictive behaviors and is a common cause of relapse. Corticotropin-releasing factor (CRF) plays a key role in the modulation of drug taking by stress. However, the mechanism by which CRF modulates neuronal activity in circuits involved in drug addiction is poorly understood. Here we show that CRF induces a potentiation of NMDAR (N-methyl-D-aspartate receptor)-mediated synaptic transmission in dopamine neurons of the ventral tegmental area (VTA). This effect involves CRF receptor 2 (CRF-R2) and activation of the phospholipase C (PLC)-protein kinase C (PKC) pathway. We also find that this potentiation requires CRF binding protein (CRF-BP). Accordingly, CRF-like peptides, which do not bind the CRF-BP with high affinity, do not potentiate NMDARs. These results provide evidence of the first specific roles for CRF-R2 and CRF-BP in the modulation of neuronal activity and suggest that NMDARs in the VTA may be a target for both drugs of abuse and stress.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Rami Yaka; Claire Thornton; Alicia Vagts; Khanhky Phamluong; Antonello Bonci; Dorit Ron
Phosphorylation regulates the function of ligand-gated ion channels such as the N-methyl d-aspartate (NMDA) receptor. Here we report a mechanism for modulation of the phosphorylation state and function of the NMDA receptor via an inhibitory scaffolding protein, RACK1. We found that RACK1 binds both the NR2B subunit of the NMDA receptor and the nonreceptor protein tyrosine kinase, Fyn. RACK1 inhibits Fyn phosphorylation of NR2B and decreases NMDA receptor-mediated currents in CA1 hippocampal slices. Peptides that disrupt the interactions between RACK1, NR2B, and Fyn induce phosphorylation and potentiate NMDA receptor-mediated currents. Therefore, RACK1 is a regulator of NMDA receptor function and may play a role in synaptic plasticity, addiction, learning, and memory.
The Journal of Neuroscience | 2006
Björn Schilström; Rami Yaka; Emanuela Argilli; Neesha Suvarna; Johanna Schumann; Billy T. Chen; Melissa Carman; Vineeta Singh; William S. Mailliard; Dorit Ron; Antonello Bonci
Cocaine-induced plasticity of glutamatergic synaptic transmission in the ventral tegmental area (VTA) plays an important role in brain adaptations that promote addictive behaviors. However, the mechanisms responsible for triggering these synaptic changes are unknown. Here, we examined the effects of acute cocaine application on glutamatergic synaptic transmission in rat midbrain slices. Cocaine caused a delayed increase in NMDA receptor (NMDAR)-mediated synaptic currents in putative VTA dopamine (DA) cells. This effect was mimicked by a specific DA reuptake inhibitor and by a DA D1/D5 receptor agonist. The effect of cocaine was blocked by a DA D1/D5 receptor antagonist as well as by inhibitors of the cAMP/cAMP-dependent protein kinase A (PKA) pathway. Furthermore, biochemical analysis showed an increase in the immunoreactivity of the NMDAR subunits NR1 and NR2B and their redistribution to the synaptic membranes in VTA neurons. Accordingly, NMDAR-mediated EPSC decay time kinetics were significantly slower after cocaine, suggesting an increased number of NR2B-containing NMDARs. Finally, pharmacological analysis indicates that NR2B subunits might be incorporated in triheteromeric NR1/NR2A/NR2B complexes rather than in “pure” NR1/NR2B NMDA receptors. Together, our data suggest that acute cocaine increases NMDAR function in the VTA via activation of the cAMP/PKA pathway mediated by a DA D5-like receptor, leading to the insertion of NR2B-containing NMDARs in the membrane. These results provide a potential mechanism by which acute cocaine promotes synaptic plasticity of VTA neurons, which could ultimately lead to the development of addictive behaviors.
Alcoholism: Clinical and Experimental Research | 2003
Rami Yaka; Ka-Choi Tang; Rosana Camarini; Patricia H. Janak; Dorit Ron
BACKGROUNDnThe tyrosine kinase Fyn previously has been shown to play a key role in mediating acute tolerance to ethanol. Recently, we found that the compartmentalization of Fyn to the NR2B subunit of the NMDA receptor (NMDAR) in the hippocampus regulates Fyn phosphorylation of NR2B in response to ethanol, which mediates the acute tolerance of NMDAR to ethanol inhibition in hippocampal slices. In this study we determined, first, whether acute tolerance to ethanol inhibition is mediated via NR2B-containing NMDARs in vivo and, second, whether the increase in acute sensitivity to ethanol in the Fyn-/- mice influences ethanol consumption or ethanols conditioned rewarding effects.nnnMETHODSnA loss of righting reflex test was used to study the acute/sedative effects of ethanol after intraperitoneal injections of sedative doses of ethanol. Conditioned place preference was used to study the rewarding properties of ethanol. The two-bottle choice protocol was used to measure oral ethanol self-administration and preference as described previously.nnnRESULTSnWe found that systemic injection of the NR2B-containing NMDAR selective antagonist, ifenprodil, abolished the differences between Fyn+/+ and Fyn-/- mice in sensitivity to the acute sedative effects of ethanol. Moreover, we found that Fyn-/- and Fyn+/+ mice did not differ in their voluntary ethanol consumption or in the rewarding properties of ethanol.nnnCONCLUSIONSnOur results suggest that the interaction between Fyn and NR2B mediates the acute sedative effects of ethanol, and that alteration in acute ethanol sensitivity does not necessarily correlate with levels of ethanol consumption or the rewarding properties of ethanol.
The Journal of Neuroscience | 2009
Johanna Schumann; Rami Yaka
Cocaine-induced changes in glutamatergic synaptic transmission in the ventral tegmental area (VTA) and the nucleus accumbens (NAc) play a key role in cocaine behavioral effects. Activation of ionotropic glutamate receptor NMDA receptor (NMDAR) in the VTA is critical for the development of cocaine psychomotor sensitization. However, the role of NMDAR in the NAc, a brain area critical for the expression of cocaine psychomotor sensitization, remains to be explored. Here, we show that repeated noncontingent cocaine injections increased NAc NMDAR subunits, NR1, NR2A, and NR2B 21 d, but not 1 d, after withdrawal from cocaine. These changes were associated with an increase in the GluR1 subunit of the AMPA receptor. We also found a time-dependent increase in extracellular signal-regulated kinase (ERK) activity which correlated with the increased expression of NMDAR subunits. Furthermore, the increase in GluR1 and ERK activity was blocked after inhibition of NR2B-containing NMDAR during the development of cocaine psychomotor sensitization or when the MEK (mitogen-activated protein/ERK kinase) inhibitor was microinjected into the NAc 21 d after withdrawal from cocaine. Together, these results suggest that the development of cocaine psychomotor sensitization triggers a delayed increase in the expression of NMDAR subunits in the NAc, which in turn enhances the activity of ERK. Enhanced ERK activity drives the increased expression of the GluR1 subunits, which increases the excitability of NAc neurons after prolonged withdrawal from cocaine and results in enduring expression of psychomotor sensitization.
The FASEB Journal | 2000
Dorit Ron; Alicia Vagts; Douglas P. Dohrman; Rami Yaka; Zhan Jiang; Lina Yao; John C. Crabbe; Judith E. Grisel
ABSTRACT Protein kinase C (PKC) is involved in many neuroadaptive responses to ethanol in the nervous system. PKC activation results in translocation of the enzyme from one intracellular site to another. Compartmentalization of PKC isozymes is regulated by targeting proteins such as receptors for activated C kinase (RACKs). It is possible, therefore, that ethanol‐induced changes in the function and compartmentalization of PKC isozymes could be due to changes in PKC targeting proteins. Here we study the response of the targeting protein RACK1 and its corresponding kinase βIIPKC to ethanol, and propose a novel mechanism to explain how ethanol modulates signaling cascades. In cultured cells, ethanol induces movement of RACK1 to the nucleus without affecting the compartmentalization of βIIPKC. Ethanol also inhibits βIIPKC translocation in response to activation. These results suggest that ethanol inhibition of βIIPKC translocation is due to miscompartmentalization of the targeting protein RACK1. Similar events occurred in mouse brain. In vivo exposure to ethanol caused RACK1 to localize to nuclei in specific brain regions, but did not affect the compartmentalization of βIIPKC. Thus, some of the cellular and neuroadaptive responses to ethanol may be related to ethanol‐induced movement of RACK1 to the nucleus, thereby preventing the translocation and corresponding function of βIIPKC.— Ron, D., Vagts, A. J., Dohrman, D. P., Yaka, R., Jiang, Z., Yao, L., Crabbe, J., Grisel, J. E., Diamond, I. Uncoupling of βIIPKC from its targeting protein RACK1 in response to ethanol in cultured cells and mouse brain. FASEB J. 14, 2303–2314 (2000)
Journal of Biological Chemistry | 2003
Claire Thornton; Rami Yaka; Son Dinh; Dorit Ron
Tyrosine phosphorylation of the NR2A and NR2B subunits of the N-methyl-d-aspartate (NMDA) receptor by Src protein-tyrosine kinases modulates receptor channel activity and is necessary for the induction of long term potentiation (LTP). Deletion of H-Ras increases both NR2 tyrosine phosphorylation and NMDA receptor-mediated hippocampal LTP. Here we investigated whether H-Ras regulates phosphorylation and function of the NMDA receptor via Src family protein-tyrosine kinases. We identified Src as a novel H-Ras binding partner. H-Ras bound to Src but not Fyn both in vitro and in brain via the Src kinase domain. Cotransfection of H-Ras and Src inhibited Src activity and decreased NR2A tyrosine phosphorylation. Treatment of rat brain slices with Tat-H-Ras depleted NR2A from the synaptic membrane, decreased endogenous Src activity and NR2A phosphorylation, and decreased the magnitude of hippocampal LTP. No change was observed for NR2B. We suggest that H-Ras negatively regulates Src phosphorylation of NR2A and retention of NR2A into the synaptic membrane leading to inhibition of NMDA receptor function. This mechanism is specific for Src and NR2A and has implications for studies in which regulation of NMDA receptor-mediated LTP is important, such as synaptic plasticity, learning, and memory and addiction.
The Journal of Neuroscience | 2009
Moshe Parnas; Ben Katz; Shaya Lev; Vered Tzarfaty; Daniela Dadon; Ariela Gordon-Shaag; Henry Metzner; Rami Yaka; Baruch Minke
Open channel block is a process in which ions bound to the inside of a channel pore block the flow of ions through that channel. Repulsion of the blocking ions by depolarization is a known mechanism of open channel block removal. For the NMDA channel, this mechanism is necessary for channel activation and is involved in neuronal plasticity. Several types of transient receptor potential (TRP) channels, including the Drosophila TRP and TRP-like (TRPL) channels, also exhibit open channel block. Therefore, removal of open channel block is necessary for the production of the physiological response to light. Because there is no membrane depolarization before the light response develops, it is not clear how the open channel block is removed, an essential step for the production of a robust light response under physiological conditions. Here we present a novel mechanism to alleviate open channel block in the absence of depolarization by membrane lipid modulations. The results of this study show open channel block removal by membrane lipid modulations in both TRPL and NMDA channels of the photoreceptor cells and CA1 hippocampal neurons, respectively. Removal of open channel block is characterized by an increase in the passage-rate of the blocking cations through the channel pore. We propose that the profound effect of membrane lipid modulations on open channel block alleviation, allows the productions of a robust current in response to light in the absence of depolarization.
Journal of Neurotrauma | 2008
Johanna Schumann; G. Alexander Alexandrovich; Anat Biegon; Rami Yaka
Traumatic brain injury (TBI) triggers a massive glutamate efflux, hyperactivation of N-methyl-D-aspartate receptors (NMDARs) and neuronal cell death. Previously it was demonstrated that, 15 min following experimentally induced closed head injury (CHI), the density of activated NMDARs increases in the hippocampus, and decreases in the cortex at the impact site. Here we show that CHI-induced alterations in activated NMDARs correlate with changes in the expression levels of the major NMDARs subunits. In the hippocampus, the expression of NR1, NR2A, and NR2B subunits as well as the GluR1 subunit of the AMPA receptor (AMPAR) were increased, while in the cortex at the impact site, we found a decrease in the expression of these subunits. We demonstrate that CHI-induced increase in the expression of NMDAR subunits and GluR1 in the hippocampus, but not in the cortex, is associated with an increase in NR2B tyrosine phosphorylation. Furthermore, inhibition of NR2B-phosphorylation by the tyrosine kinase inhibitor PP2 restores the expression of this subunit to its normal levels. Finally, a single injection of PP2, prior to the induction of CHI, resulted in a significant improvement in long-term recovery of motor functions observed in CHI mice. These results provide a new mechanism by which acute trauma contributes to the development of secondary damage and functional deficits in the brain, and suggests a possible role for Src tyrosine kinase inhibitors as preoperative therapy for planned neurosurgical procedures.
The Journal of Neuroscience | 2011
Stuart L. Gibb; Jerome Jeanblanc; Segev Barak; Quinn V. Yowell; Rami Yaka; Dorit Ron
We report here that the Src family tyrosine kinase Lyn negatively regulates the release of dopamine (DA) in the mesolimbic system, as well as the rewarding properties of alcohol. Specifically, we show that RNA interference-mediated knockdown of Lyn expression results in an increase in KCl-induced DA release in DAergic-like SH-SY5Y cells, whereas overexpression of a constitutively active form of Lyn (CA-Lyn) leads to a decrease of DA release. Activation of ventral tegmental area (VTA) DAergic neurons results in DA overflow in the nucleus accumbens (NAc), and we found that the evoked release of DA was higher in the NAc of Lyn knock-out (Lyn KO) mice compared with wild-type littermate (Lyn WT) controls. Acute exposure of rodents to alcohol causes a rapid increase in DA release in the NAc, and we show that overexpression of CA-Lyn in the VTA of mice blocked alcohol-induced (2 g/kg) DA release in the NAc. Increase in DA levels in the NAc is closely associated with reward-related behaviors, and overexpression of CA-Lyn in the VTA of mice led to an attenuation of alcohol reward, measured in a conditioned place preference paradigm. Conversely, alcohol place preference was increased in Lyn KO mice compared with Lyn WT controls. Together, our results suggest a novel role for Lyn kinase in the regulation of DA release in the mesolimbic system, which leads to the control of alcohol reward.