Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramin Homayouni is active.

Publication


Featured researches published by Ramin Homayouni.


PLOS Pathogens | 2007

The Transcription Factor Mrr1p Controls Expression of the MDR1 Efflux Pump and Mediates Multidrug Resistance in Candida albicans

Joachim Morschhäuser; Katherine S. Barker; Teresa T. Liu; Julia Blaß-Warmuth; Ramin Homayouni; P. David Rogers

Constitutive overexpression of the MDR1 (multidrug resistance) gene, which encodes a multidrug efflux pump of the major facilitator superfamily, is a frequent cause of resistance to fluconazole and other toxic compounds in clinical Candida albicans strains, but the mechanism of MDR1 upregulation has not been resolved. By genome-wide gene expression analysis we have identified a zinc cluster transcription factor, designated as MRR1 (multidrug resistance regulator), that was coordinately upregulated with MDR1 in drug-resistant, clinical C. albicans isolates. Inactivation of MRR1 in two such drug-resistant isolates abolished both MDR1 expression and multidrug resistance. Sequence analysis of the MRR1 alleles of two matched drug-sensitive and drug-resistant C. albicans isolate pairs showed that the resistant isolates had become homozygous for MRR1 alleles that contained single nucleotide substitutions, resulting in a P683S exchange in one isolate and a G997V substitution in the other isolate. Introduction of these mutated alleles into a drug-susceptible C. albicans strain resulted in constitutive MDR1 overexpression and multidrug resistance. By comparing the transcriptional profiles of drug-resistant C. albicans isolates and mrr1Δ mutants derived from them and of C. albicans strains carrying wild-type and mutated MRR1 alleles, we defined the target genes that are controlled by Mrr1p. Many of the Mrr1p target genes encode oxidoreductases, whose upregulation in fluconazole-resistant isolates may help to prevent cell damage resulting from the generation of toxic molecules in the presence of fluconazole and thereby contribute to drug resistance. The identification of MRR1 as the central regulator of the MDR1 efflux pump and the elucidation of the mutations that have occurred in fluconazole-resistant, clinical C. albicans isolates and result in constitutive activity of this trancription factor provide detailed insights into the molecular basis of multidrug resistance in this important human fungal pathogen.


Eukaryotic Cell | 2008

A Gain-of-Function Mutation in the Transcription Factor Upc2p Causes Upregulation of Ergosterol Biosynthesis Genes and Increased Fluconazole Resistance in a Clinical Candida albicans Isolate

Nico Dunkel; Teresa T. Liu; Katherine S. Barker; Ramin Homayouni; Joachim Morschhäuser; P. David Rogers

ABSTRACT In the pathogenic yeast Candida albicans, the zinc cluster transcription factor Upc2p has been shown to regulate the expression of ERG11 and other genes involved in ergosterol biosynthesis upon exposure to azole antifungals. ERG11 encodes lanosterol demethylase, the target enzyme of this antifungal class. Overexpression of UPC2 reduces azole susceptibility, whereas its disruption results in hypersusceptibility to azoles and reduced accumulation of exogenous sterols. Overexpression of ERG11 leads to the increased production of lanosterol demethylase, which contributes to azole resistance in clinical isolates of C. albicans, but the mechanism for this has yet to be determined. Using genome-wide gene expression profiling, we found UPC2 and other genes involved in ergosterol biosynthesis to be coordinately upregulated with ERG11 in a fluconazole-resistant clinical isolate compared with a matched susceptible isolate from the same patient. Sequence analysis of the UPC2 alleles of these isolates revealed that the resistant isolate contained a single-nucleotide substitution in one UPC2 allele that resulted in a G648D exchange in the encoded protein. Introduction of the mutated allele into a drug-susceptible strain resulted in constitutive upregulation of ERG11 and increased resistance to fluconazole. By comparing the gene expression profiles of the fluconazole-resistant isolate and of strains carrying wild-type and mutated UPC2 alleles, we identified target genes that are controlled by Upc2p. Here we show for the first time that a gain-of-function mutation in UPC2 leads to the increased expression of ERG11 and imparts resistance to fluconazole in clinical isolates of C. albicans.


Journal of Biological Chemistry | 2006

NFκB Negatively Regulates Interferon-induced Gene Expression and Anti-influenza Activity

Lai Wei; Matthew R. Sandbulte; Paul G. Thomas; Richard J. Webby; Ramin Homayouni; Lawrence M. Pfeffer

Interferons (IFNs) are antiviral cytokines that selectively regulate gene expression through several signaling pathways including nuclear factor κB(NFκB). To investigate the specific role of NFκB in IFN signaling, we performed gene expression profiling after IFN treatment of embryonic fibroblasts derived from normal mice or mice with targeted deletion of NFκB p50 and p65 genes. Interestingly, several antiviral and immunomodulatory genes were induced higher by IFN in NFκB knock-out cells. Chromatin immunoprecipitation experiments demonstrated that NFκB was basally bound to the promoters of these genes, while IFN treatment resulted in the recruitment of STAT1 and STAT2 to these promoters. However, in NFκB knock-out cells IFN induced STAT binding as well as the binding of the IFN regulatory factor-1 (IRF1) to the IFN-stimulated gene (ISG) promoters. IRF1 binding closely correlated with enhanced gene induction. Moreover, NFκB suppressed both antiviral and immunomodulatory actions of IFN against influenza virus. Our results identify a novel negative regulatory role of NFκB in IFN-induced gene expression and biological activities and suggest that modulating NFκB activity may provide a new avenue for enhancing the therapeutic effectiveness of IFN.


Eukaryotic Cell | 2011

Genomewide Expression Profile Analysis of the Candida glabrata Pdr1 Regulon

Kelly E. Caudle; Katherine S. Barker; Nathan P. Wiederhold; Lijing Xu; Ramin Homayouni; P. David Rogers

ABSTRACT The ABC transporters Candida glabrata Cdr1 (CgCdr1), CgPdh1, and CgSnq2 are known to mediate azole resistance in the pathogenic fungus C. glabrata. Activating mutations in CgPDR1, a zinc cluster transcription factor, result in constitutive upregulation of these ABC transporter genes but to various degrees. We examined the genomewide gene expression profiles of two matched azole-susceptible and -resistant C. glabrata clinical isolate pairs. Of the differentially expressed genes identified in the gene expression profiles for these two matched pairs, there were 28 genes commonly upregulated with CgCDR1 in both isolate sets including YOR1, LCB5, RTA1, POG1, HFD1, and several members of the FLO gene family of flocculation genes. We then sequenced CgPDR1 from each susceptible and resistant isolate and found two novel activating mutations that conferred increased resistance when they were expressed in a common background strain in which CgPDR1 had been disrupted. Microarray analysis comparing these reengineered strains to their respective parent strains identified a set of commonly differentially expressed genes, including CgCDR1, YOR1, and YIM1, as well as genes uniquely regulated by specific mutations. Our results demonstrate that while CgPdr1 activates a broad repertoire of genes, specific activating mutations result in the activation of discrete subsets of this repertoire.


PLOS ONE | 2014

Functionally enigmatic genes: a case study of the brain ignorome.

Ashutosh K. Pandey; Lu Lu; Xusheng Wang; Ramin Homayouni; Robert W. Williams

What proportion of genes with intense and selective expression in specific tissues, cells, or systems are still almost completely uncharacterized with respect to biological function? In what ways do these functionally enigmatic genes differ from well-studied genes? To address these two questions, we devised a computational approach that defines so-called ignoromes. As proof of principle, we extracted and analyzed a large subset of genes with intense and selective expression in brain. We find that publications associated with this set are highly skewed—the top 5% of genes absorb 70% of the relevant literature. In contrast, approximately 20% of genes have essentially no neuroscience literature. Analysis of the ignorome over the past decade demonstrates that it is stubbornly persistent, and the rapid expansion of the neuroscience literature has not had the expected effect on numbers of these genes. Surprisingly, ignorome genes do not differ from well-studied genes in terms of connectivity in coexpression networks. Nor do they differ with respect to numbers of orthologs, paralogs, or protein domains. The major distinguishing characteristic between these sets of genes is date of discovery, early discovery being associated with greater research momentum—a genomic bandwagon effect. Finally we ask to what extent massive genomic, imaging, and phenotype data sets can be used to provide high-throughput functional annotation for an entire ignorome. In a majority of cases we have been able to extract and add significant information for these neglected genes. In several cases—ELMOD1, TMEM88B, and DZANK1—we have exploited sequence polymorphisms, large phenome data sets, and reverse genetic methods to evaluate the function of ignorome genes.


BMC Genomics | 2008

Using gene expression databases for classical trait QTL candidate gene discovery in the BXD recombinant inbred genetic reference population: Mouse forebrain weight

Lu Lu; Lai Wei; Jeremy L. Peirce; Xusheng Wang; Jianhua Zhou; Ramin Homayouni; Robert W. Williams; David C. Airey

BackgroundSuccessful strategies for QTL gene identification benefit from combined experimental and bioinformatic approaches. Unique design aspects of the BXD recombinant inbred line mapping panel allow use of archived gene microarray expression data to filter likely from unlikely candidates. This prompted us to propose a simple five-filter protocol for candidate nomination. To filter more likely from less likely candidates, we required candidate genes near to the QTL to have mRNA abundance that correlated with the phenotype among the BXD lines as well as differed between the parental lines C57BL/6J and DBA/2J. We also required verification of mRNA abundance by an independent method, and finally we required either differences in protein levels or confirmed DNA sequence differences.ResultsQTL mapping of mouse forebrain weight in 34 BXD RI lines found significant association on chromosomes 1 and 11, with each C57BL/6J allele increasing weight by more than half a standard deviation. The intersection of gene lists that were within ± 10 Mb of the strongest associated location, that had forebrain mRNA abundance correlated with forebrain weight among the BXD, and that had forebrain mRNA abundance differing between C57BL/6J and DBA/2J, produced two candidates, Tnni1 (troponin 1) and Asb3 (ankyrin repeat and SOCS box-containing protein 3). Quantitative RT-PCR confirmed the direction of an increased expression in C57BL/6J genotype over the DBA/2J genotype for both genes, a difference that translated to a 2-fold difference in Asb3 protein. Although Tnni1 protein differences could not be confirmed, a 273 bp indel polymorphism was discovered 1 Kb upstream of the transcription start site.ConclusionDelivery of well supported candidate genes following a single quantitative trait locus mapping experiment is difficult. However, by combining available gene expression data with QTL mapping, we illustrated a five-filter protocol that nominated Asb3 and Tnni1 as candidates affecting increased mouse forebrain weight. We recommend our approach when (1) investigators are working with phenotypic differences between C57BL/6J and DBA/2J, and (2) gene expression data are available on http://www.genenetwork.org that relate to the phenotype of interest. Under these circumstances, measurement of the phenotype in the BXD lines will likely also deliver excellent candidate genes.


PLOS ONE | 2011

Functional Cohesion of Gene Sets Determined by Latent Semantic Indexing of PubMed Abstracts

Lijing Xu; Nicholas Furlotte; Yunyue Lin; Kevin Heinrich; Michael W. Berry; Ebenezer O. George; Ramin Homayouni

High-throughput genomic technologies enable researchers to identify genes that are co-regulated with respect to specific experimental conditions. Numerous statistical approaches have been developed to identify differentially expressed genes. Because each approach can produce distinct gene sets, it is difficult for biologists to determine which statistical approach yields biologically relevant gene sets and is appropriate for their study. To address this issue, we implemented Latent Semantic Indexing (LSI) to determine the functional coherence of gene sets. An LSI model was built using over 1 million Medline abstracts for over 20,000 mouse and human genes annotated in Entrez Gene. The gene-to-gene LSI-derived similarities were used to calculate a literature cohesion p-value (LPv) for a given gene set using a Fishers exact test. We tested this method against genes in more than 6,000 functional pathways annotated in Gene Ontology (GO) and found that approximately 75% of gene sets in GO biological process category and 90% of the gene sets in GO molecular function and cellular component categories were functionally cohesive (LPv<0.05). These results indicate that the LPv methodology is both robust and accurate. Application of this method to previously published microarray datasets demonstrated that LPv can be helpful in selecting the appropriate feature extraction methods. To enable real-time calculation of LPv for mouse or human gene sets, we developed a web tool called Gene-set Cohesion Analysis Tool (GCAT). GCAT can complement other gene set enrichment approaches by determining the overall functional cohesion of data sets, taking into account both explicit and implicit gene interactions reported in the biomedical literature. Availability GCAT is freely available at http://binf1.memphis.edu/gcat


PLOS ONE | 2012

Dab2ip Regulates Neuronal Migration and Neurite Outgrowth in the Developing Neocortex

Gum Hwa Lee; Sun Hong Kim; Ramin Homayouni; Gabriella D'Arcangelo

Dab2ip (DOC-2/DAB2 interacting protein) is a member of the Ras GTPase-activating protein (GAP) family that has been previously shown to function as a tumor suppressor in several systems. Dab2ip is also highly expressed in the brain where it interacts with Dab1, a key mediator of the Reelin pathway that controls several aspects of brain development and function. We found that Dab2ip is highly expressed in the developing cerebral cortex, but that mutations in the Reelin signaling pathway do not affect its expression. To determine whether Dab2ip plays a role in brain development, we knocked down or over expressed it in neuronal progenitor cells of the embryonic mouse neocortex using in utero electroporation. Dab2ip down-regulation severely disrupts neuronal migration, affecting preferentially late-born principal cortical neurons. Dab2ip overexpression also leads to migration defects. Structure-function experiments in vivo further show that both PH and GRD domains of Dab2ip are important for neuronal migration. A detailed analysis of transfected neurons reveals that Dab2ip down- or up-regulation disrupts the transition from a multipolar to a bipolar neuronal morphology in the intermediate zone. Knock down of Dab2ip in neurons ex-vivo indicates that this protein is necessary for proper neurite development and for the expression of several major neuronal microtubule associated proteins (MAPs), which are important for neurite growth and stabilization. Thus, our study identifies, for the first time, a critical role for Dab2ip in mammalian cortical development and begins to reveal molecular mechanisms that underlie this function.


PLOS ONE | 2013

Expression Levels of Obesity-Related Genes Are Associated with Weight Change in Kidney Transplant Recipients

Ann Cashion; Ansley Grimes Stanfill; Fridtjof Thomas; Lijing Xu; Thomas R. Sutter; James D. Eason; Mang Ensell; Ramin Homayouni

Background The aim of this study was to investigate the association of gene expression profiles in subcutaneous adipose tissue with weight change in kidney transplant recipients and to gain insights into the underlying mechanisms of weight gain. Methodology/Principal Findings A secondary data analysis was done on a subgroup (n = 26) of existing clinical and gene expression data from a larger prospective longitudinal study examining factors contributing to weight gain in transplant recipients. Measurements taken included adipose tissue gene expression profiles at time of transplant, baseline and six-month weight, and demographic data. Using multivariate linear regression analysis controlled for race and gender, expression levels of 1553 genes were significantly (p<0.05) associated with weight change. Functional analysis using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes classifications identified metabolic pathways that were enriched in this dataset. Furthermore, GeneIndexer literature mining analysis identified a subset of genes that are highly associated with obesity in the literature and Ingenuity pathway analysis revealed several significant gene networks associated with metabolism and endocrine function. Polymorphisms in several of these genes have previously been linked to obesity. Conclusions/Significance We have successfully identified a set of molecular pathways that taken together may provide insights into the mechanisms of weight gain in kidney transplant recipients. Future work will be done to determine how these pathways may contribute to weight gain.


BMC Bioinformatics | 2010

Discovering gene functional relationships using FAUN (Feature Annotation Using Nonnegative matrix factorization)

Elina Tjioe; Michael W. Berry; Ramin Homayouni

BackgroundSearching the enormous amount of information available in biomedical literature to extract novel functional relationships among genes remains a challenge in the field of bioinformatics. While numerous (software) tools have been developed to extract and identify gene relationships from biological databases, few effectively deal with extracting new (or implied) gene relationships, a process which is useful in interpretation of discovery-oriented genome-wide experiments.ResultsIn this study, we develop a Web-based bioinformatics software environment called FAUN or Feature Annotation Using Nonnegative matrix factorization (NMF) to facilitate both the discovery and classification of functional relationships among genes. Both the computational complexity and parameterization of NMF for processing gene sets are discussed. FAUN is tested on three manually constructed gene document collections. Its utility and performance as a knowledge discovery tool is demonstrated using a set of genes associated with Autism.ConclusionsFAUN not only assists researchers to use biomedical literature efficiently, but also provides utilities for knowledge discovery. This Web-based software environment may be useful for the validation and analysis of functional associations in gene subsets identified by high-throughput experiments.

Collaboration


Dive into the Ramin Homayouni's collaboration.

Top Co-Authors

Avatar

Lijing Xu

University of Memphis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sujoy Sinha Roy

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lai Wei

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Katherine S. Barker

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

P. David Rogers

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Robert W. Williams

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Dan Goldowitz

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge