Ramiro Barrantes
University of Costa Rica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ramiro Barrantes.
Nature | 2012
David Reich; Nick Patterson; Desmond D. Campbell; Arti Tandon; Stéphane Mazières; Nicolas Ray; María Victoria Parra; Winston Rojas; Constanza Duque; Natalia Mesa; Luis F. García; Omar Triana; Silvia Blair; Amanda Maestre; Juan C. Dib; Claudio M. Bravi; Graciela Bailliet; Daniel Corach; Tábita Hünemeier; Maria-Cátira Bortolini; Francisco M. Salzano; Maria Luiza Petzl-Erler; Victor Acuña-Alonzo; Carlos A. Aguilar-Salinas; Samuel Canizales-Quinteros; Teresa Tusié-Luna; Laura Riba; Maricela Rodríguez-Cruz; Mardia Lopez-Alarcón; Ramón Coral-Vazquez
The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved. One contentious issue is whether the settlement occurred by means of a single migration or multiple streams of migration from Siberia. The pattern of dispersals within the Americas is also poorly understood. To address these questions at a higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. Here we show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call ‘First American’. However, speakers of Eskimo–Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan speakers on both sides of the Panama isthmus, who have ancestry from both North and South America.
PLOS Genetics | 2008
Sijia Wang; Nicolas Ray; Winston Rojas; María Victoria Parra; Gabriel Bedoya; Carla Gallo; Giovanni Poletti; Guido Mazzotti; Kim Hill; Ana Magdalena Hurtado; Beatriz Camrena; Humberto Nicolini; William Klitz; Ramiro Barrantes; Julio Molina; Nelson B. Freimer; Maria Cátira Bortolini; Francisco M. Salzano; Maria Luiza Petzl-Erler; Luiza Tamie Tsuneto; José Edgardo Dipierri; Emma Alfaro; Graciela Bailliet; N. O. Bianchi; Elena Llop; Francisco Rothhammer; Laurent Excoffier; Andres Ruiz-Linares
The large and diverse population of Latin America is potentially a powerful resource for elucidating the genetic basis of complex traits through admixture mapping. However, no genome-wide characterization of admixture across Latin America has yet been attempted. Here, we report an analysis of admixture in thirteen Mestizo populations (i.e. in regions of mainly European and Native settlement) from seven countries in Latin America based on data for 678 autosomal and 29 X-chromosome microsatellites. We found extensive variation in Native American and European ancestry (and generally low levels of African ancestry) among populations and individuals, and evidence that admixture across Latin America has often involved predominantly European men and both Native and African women. An admixture analysis allowing for Native American population subdivision revealed a differentiation of the Native American ancestry amongst Mestizos. This observation is consistent with the genetic structure of pre-Columbian populations and with admixture having involved Natives from the area where the Mestizo examined are located. Our findings agree with available information on the demographic history of Latin America and have a number of implications for the design of association studies in population from the region.
Neurogenetics | 2009
Alejandro Leal; Kathrin Huehne; Finn Bauer; Heinrich Sticht; Philipp Berger; Ueli Suter; Bernal Morera; Gerardo Del Valle; James R. Lupski; Arif B. Ekici; Francesca Pasutto; Sabine Endele; Ramiro Barrantes; Corinna Berghoff; Martin Berghoff; B. Neundörfer; Dieter Heuss; Thomas Dorn; Peter Young; Lisa Santolin; Thomas Uhlmann; Michael Meisterernst; Michael W. Sereda; Gerd Meyer zu Hörste; Klaus-Armin Nave; André Reis; Bernd Rautenstrauss
Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous disorder. All mendelian patterns of inheritance have been described. We identified a homozygous p.A335V mutation in the MED25 gene in an extended Costa Rican family with autosomal recessively inherited Charcot-Marie-Tooth neuropathy linked to the CMT2B2 locus in chromosome 19q13.3. MED25, also known as ARC92 and ACID1, is a subunit of the human activator-recruited cofactor (ARC), a family of large transcriptional coactivator complexes related to the yeast Mediator. MED25 was identified by virtue of functional association with the activator domains of multiple cellular and viral transcriptional activators. Its exact physiological function in transcriptional regulation remains obscure. The CMT2B2-associated missense amino acid substitution p.A335V is located in a proline-rich region with high affinity for SH3 domains of the Abelson type. The mutation causes a decrease in binding specificity leading to the recognition of a broader range of SH3 domain proteins. Furthermore, Med25 is coordinately expressed with Pmp22 gene dosage and expression in transgenic mice and rats. These results suggest a potential role of this protein in the molecular etiology of CMT2B2 and suggest a potential, more general role of MED25 in gene dosage sensitive peripheral neuropathy pathogenesis.Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous disorder. All mendelian patterns of inheritance have been described. We identified a homozygous p.A335V mutation in the MED25 gene in an extended Costa Rican family with autosomal recessively inherited Charcot-Marie-Tooth neuropathy linked to the CMT2B2 locus in chromosome 19q13.3. MED25, also known as ARC92 and ACID1, is a subunit of the human activator-recruited cofactor (ARC), a family of large transcriptional coactivator complexes related to the yeast Mediator. MED25 was identified by virtue of functional association with the activator domains of multiple cellular and viral transcriptional activators. Its exact physiological function in transcriptional regulation remains obscure. The CMT2B2-associated missense amino acid substitution p.A335V is located in a proline-rich region with high affinity for SH3 domains of the Abelson type. The mutation causes a decrease in binding specificity leading to the recognition of a broader range of SH3 domain proteins. Furthermore, Med25 is coordinately expressed with Pmp22 gene dosage and expression in transgenic mice and rats. These results suggest a potential role of this protein in the molecular etiology of CMT2B2 and suggest a potential, more general role of MED25 in gene dosage sensitive peripheral neuropathy pathogenesis.
Gene | 2003
Alejandro Leal; Sabine Endele; Corinna Stengel; Kathrin Huehne; Joachim Loetterle; Ramiro Barrantes; Andreas Winterpacht; Bernd Rautenstrauss
A human myosin heavy chain gene was identified in chromosome 19q13 by computational sequence analysis, RT-PCR and DNA sequencing of the cDNA. The complete cDNA has a length of 6786 bp and comprises 41 exons (40 coding) included in 108 kb of genomic sequence. Alternative splicing variants were also identified. The gene is expressed in a multitude of tissues, but mainly in small intestine, colon and skeletal muscle. The putative protein (228 kDa) carries the common myosin domains and presents high homology with the non-muscle myosin heavy chains (MYH9 and MYH10) as well as the smooth muscle myosin heavy chain MYH11. Nevertheless, phylogenetic analysis indicated that these homologous proteins are more related among themselves than to MYH14, suggesting that possibly this myosin heavy chain should be classified in a new myosin-subfamily.
Annals of Human Genetics | 2003
Bernal Morera; Ramiro Barrantes; R. Marin-Rojas
The general population of Costa Rica has sometimes been considered to be the product of an amalgamation of groups of diverse origin. To determine the magnitude of accumulated admixture since Spanish colonization, 11 classic genetic markers were analyzed in a total of 2196 individuals originating from five distinct regions of the country. A maximum likelihood approach was used. The proportions of genes of European, Amerindian and African ancestry were found to be 61%, 30% and 9% of the total population, respectively. Variation was observed at a regional level, with an increased European influence in the North (66%) and Central (65%) regions. Meanwhile an increase in Amerindian ancestry was found in the South (38%), and a higher incidence in the contribution of African genes was detected in the coastal regions (13% in the Atlantic and 14% in the North Pacific). A principal component (PC) analysis showed that 76% of the existing variability can be explained by the first two PCs, which is in agreement with the variations observed in the admixture process by geographic area. It has been concluded that the Costa Rican population is truly trihybrid, similar to populations in other Latin American countries; however, it differs from them fundamentally by the proportion of gene flow from ancestral populations.
Annals of Human Genetics | 2010
Ning Ning Yang; Stéphane Mazières; Claudio M. Bravi; Nicolas Ray; Sijia Wang; Mari-Wyn Burley; Gabriel Bedoya; Winston Rojas; María Victoria Parra; Julio Molina; Carla Gallo; Giovanni Poletti; Kim Hill; Ana Magdalena Hurtado; Maria Luiza Petzl-Erler; Luiza Tamie Tsuneto; William Klitz; Ramiro Barrantes; Elena Llop; Francisco Rothhammer; Damian Labuda; Francisco M. Salzano; Maria-Cátira Bortolini; Laurent Excoffier; Jean-Michel Dugoujon; Andres Ruiz-Linares
We report an integrated analysis of nuclear (autosomal, X‐ and Y‐chromosome) short tandem repeat (STR) data and mtDNA D‐loop sequences obtained in the same set of 22 Native populations from across the Americas. A north to south gradient of decreasing population diversity was observed, in agreement with a settlement of the Americas from the extreme northwest of the continent. This correlation is stronger with “least cost distances,” which consider the coasts as facilitators of migration. Continent‐wide estimates of population structure are highest for the Y‐chromosome and lowest for the autosomes, consistent with the effective size of the different marker systems examined. Population differentiation is highest in East South America and lowest in Meso America and the Andean region. Regional analyses suggest a deviation from mutation–drift equilibrium consistent with population expansion in Meso America and the Andes and population contraction in Northwest and East South America. These data hint at an early divergence of Andean and non‐Andean South Americans and at a contrasting demographic history for populations from these regions.
Human Ecology | 2002
Maria E. Zaldivar; Oscar J. Rocha; Emilio Castro; Ramiro Barrantes
We studied edible crop species diversity at homegardens of two Chibchan Amerindian Reserves in Costa Rica: Talamanca and Coto Brus. We visited six settlements at Talamanca and five at Coto Brus. We recorded the number of edible crop species growing homegardens; we found 46 edible plant species at Talamanca and 27 at Coto Brus. The mean number of species per homegarden ranged between 3.80 and 6.80 at Coto Brus and 4.50 and 8.63 at Talamanca. We identified species that were common, i.e., found in most households and all settlements, and species that were rare. We estimated diversity indexes for each settlement and each Reserve. Also, we compared crop species composition between both Reserves and among settlements within each Reserve, using the Jaccard coefficient of community similarity. Settlements from the same Reserve were grouped together, with the exception of Villa Palacios from the Coto Brus Reserve.
European Journal of Human Genetics | 2003
Guangyun Sun; Stephen T. McGarvey; Riad Bayoumi; Connie J. Mulligan; Ramiro Barrantes; Salmo Raskin; Yixi Zhong; Joshua M. Akey; Ranajit Chakraborty; Ranjan Deka
We have studied genetic variation at nine autosomal short tandem repeat loci in 20 globally distributed human populations defined by geographic and ethnic origins, viz., African, Caucasian, Asian, Native American and Oceanic. The purpose of this study is to evaluate the utility and applicability of these nine loci in forensic analysis in worldwide populations. The levels of genetic variation measured by number of alleles, allele size variance and heterozygosity are high in all populations irrespective of their effective sizes. Single- as well as multi-locus genotype frequencies are in conformity with the assumptions of Hardy-Weinberg equilibrium. Further, alleles across the entire set of nine loci are mutually independent in all populations. Gene diversity analysis shows that pooling of population data by major geographic groupings does not introduce substructure effects beyond the levels recommended by the National Research Council, validating the establishment of population databases based on major geographic and ethnic groupings. A network tree based on genetic distances further supports this assertion, in which populations of common ancestry cluster together. With respect to the power of discrimination and exclusion probabilities, even the relatively reduced levels of genetic variation at these nine STR loci in smaller and isolated populations provide an exclusionary power over 99%. However, in paternity testing with unknown genotype of the mother, the power of exclusion could fall below 80% in some isolated populations, and in such cases use of additional loci supplementing the battery of the nine loci is recommended.
Journal of Genetics | 1999
Ranjan Deka; Mark D. Shriver; Ling Mei Yu; Elisa Mueller Heidreich; Li Jin; Yixi Zhong; Stephen T. McGarvey; Shyam Swarup Agarwal; Clareann H. Bunker; Tetsuro Miki; J. Hundrieser; Shih-Jiun Yin; Salmo Raskin; Ramiro Barrantes; Robert E. Ferrell; Ranajit Chakraborty
We have analysed genetic variation at 23 microsatellite loci in a global sample of 16 ethnically and geographically diverse human populations. On the basis of their ancestral heritage and geographic locations, the studied populations can be divided into five major groups, viz. African, Caucasian, Asian Mongoloid, American Indian and Pacific Islander. With respect to the distribution of alleles at the 23 loci, large variability exists among the examined populations. However, with the exception of the American Indians and the Pacific Islanders, populations within a continental group show a greater degree of similarity. Phylogenetic analyses based on allele frequencies at the examined loci show that the first split of the present-day human populations had occurred between the Africans and all of the non-African populations, lending support to an African origin of modern human populations. Gene diversity analyses show that the coefficient of gene diversity estimated from the 23 loci is, in general, larger for populations that have remained isolated and probably of smaller effective sizes, such as the American Indians and the Pacific Islanders. These analyses also demonstrate that the component of total gene diversity, which is attributed to variation between groups of populations, is significantly larger than that among populations within each group. The empirical data presented in this work and their analyses reaffirm that evolutionary histories and the extent of genetic variation among human populations can be studied using microsatellite loci.
PLOS ONE | 2012
Tábita Hünemeier; Carlos Eduardo G. Amorim; Soledad de Azevedo; Verônica Contini; Victor Acuña-Alonzo; Francisco Rothhammer; Jean-Michel Dugoujon; Stéphane Mazières; Ramiro Barrantes; María Teresa Villarreal-Molina; Vanessa Rodrigues Paixão-Côrtes; Francisco M. Salzano; Samuel Canizales-Quinteros; Andres Ruiz-Linares; Maria Cátira Bortolini
Culture and genetics rely on two distinct but not isolated transmission systems. Cultural processes may change the human selective environment and thereby affect which individuals survive and reproduce. Here, we evaluated whether the modes of subsistence in Native American populations and the frequencies of the ABCA1*Arg230Cys polymorphism were correlated. Further, we examined whether the evolutionary consequences of the agriculturally constructed niche in Mesoamerica could be considered as a gene-culture coevolution model. For this purpose, we genotyped 229 individuals affiliated with 19 Native American populations and added data for 41 other Native American groups (n = 1905) to the analysis. In combination with the SNP cluster of a neutral region, this dataset was then used to unravel the scenario involved in 230Cys evolutionary history. The estimated age of 230Cys is compatible with its origin occurring in the American continent. The correlation of its frequencies with the archeological data on Zea pollen in Mesoamerica/Central America, the neutral coalescent simulations, and the FST-based natural selection analysis suggest that maize domestication was the driving force in the increase in the frequencies of 230Cys in this region. These results may represent the first example of a gene-culture coevolution involving an autochthonous American allele.