Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramnik J. Xavier is active.

Publication


Featured researches published by Ramnik J. Xavier.


Nature | 2007

Unravelling the pathogenesis of inflammatory bowel disease

Ramnik J. Xavier; Daniel K. Podolsky

Recently, substantial advances in the understanding of the molecular pathogenesis of inflammatory bowel disease (IBD) have been made owing to three related lines of investigation. First, IBD has been found to be the most tractable of complex disorders for discovering susceptibility genes, and these have shown the importance of epithelial barrier function, and innate and adaptive immunity in disease pathogenesis. Second, efforts directed towards the identification of environmental factors implicate commensal bacteria (or their products), rather than conventional pathogens, as drivers of dysregulated immunity and IBD. Third, murine models, which exhibit many of the features of ulcerative colitis and seem to be bacteria-driven, have helped unravel the pathogenesis/mucosal immunopathology of IBD.


Nature Genetics | 2008

Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease

Jeffrey C. Barrett; Sarah Hansoul; Dan L. Nicolae; Judy H. Cho; Richard H. Duerr; John D. Rioux; Steven R. Brant; Mark S. Silverberg; Kent D. Taylor; M. Michael Barmada; Alain Bitton; Themistocles Dassopoulos; Lisa W. Datta; Todd Green; Anne M. Griffiths; Emily O. Kistner; Miguel Regueiro; Jerome I. Rotter; L. Philip Schumm; A. Hillary Steinhart; Stephan R. Targan; Ramnik J. Xavier; Cécile Libioulle; Cynthia Sandor; Mark Lathrop; Jacques Belaiche; Olivier Dewit; Ivo Gut; Simon Heath; Debby Laukens

Several risk factors for Crohns disease have been identified in recent genome-wide association studies. To advance gene discovery further, we combined data from three studies on Crohns disease (a total of 3,230 cases and 4,829 controls) and carried out replication in 3,664 independent cases with a mixture of population-based and family-based controls. The results strongly confirm 11 previously reported loci and provide genome-wide significant evidence for 21 additional loci, including the regions containing STAT3, JAK2, ICOSLG, CDKAL1 and ITLN1. The expanded molecular understanding of the basis of this disease offers promise for informed therapeutic development.


Nature Genetics | 2007

Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis

John D. Rioux; Ramnik J. Xavier; Kent D. Taylor; Mark S. Silverberg; Philippe Goyette; Alan Huett; Todd Green; Petric Kuballa; M. Michael Barmada; Lisa W. Datta; Yin Yao Shugart; Anne M. Griffiths; Stephan R. Targan; Andrew Ippoliti; Edmond Jean Bernard; Ling Mei; Dan L. Nicolae; Miguel Regueiro; L. Philip Schumm; A. Hillary Steinhart; Jerome I. Rotter; Richard H. Duerr; Judy H. Cho; Mark J. Daly; Steven R. Brant

We present a genome-wide association study of ileal Crohn disease and two independent replication studies that identify several new regions of association to Crohn disease. Specifically, in addition to the previously established CARD15 and IL23R associations, we identified strong and significantly replicated associations (combined P < 10−10) with an intergenic region on 10q21.1 and a coding variant in ATG16L1, the latter of which was also recently reported by another group. We also report strong associations with independent replication to variation in the genomic regions encoding PHOX2B, NCF4 and a predicted gene on 16q24.1 (FAM92B). Finally, we demonstrate that ATG16L1 is expressed in intestinal epithelial cell lines and that functional knockdown of this gene abrogates autophagy of Salmonella typhimurium. Together, these findings suggest that autophagy and host cell responses to intracellular microbes are involved in the pathogenesis of Crohn disease.


Nature | 2009

Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43

Kendle M. Maslowski; Angélica T. Vieira; Aylwin Ng; Jan Kranich; Frederic Sierro; Di Yu; Heidi C Schilter; Michael S. Rolph; Fabienne Mackay; David Artis; Ramnik J. Xavier; Mauro M. Teixeira; Charles R. Mackay

The immune system responds to pathogens by a variety of pattern recognition molecules such as the Toll-like receptors (TLRs), which promote recognition of dangerous foreign pathogens. However, recent evidence indicates that normal intestinal microbiota might also positively influence immune responses, and protect against the development of inflammatory diseases. One of these elements may be short-chain fatty acids (SCFAs), which are produced by fermentation of dietary fibre by intestinal microbiota. A feature of human ulcerative colitis and other colitic diseases is a change in ‘healthy’ microbiota such as Bifidobacterium and Bacteriodes, and a concurrent reduction in SCFAs. Moreover, increased intake of fermentable dietary fibre, or SCFAs, seems to be clinically beneficial in the treatment of colitis. SCFAs bind the G-protein-coupled receptor 43 (GPR43, also known as FFAR2), and here we show that SCFA–GPR43 interactions profoundly affect inflammatory responses. Stimulation of GPR43 by SCFAs was necessary for the normal resolution of certain inflammatory responses, because GPR43-deficient (Gpr43-/-) mice showed exacerbated or unresolving inflammation in models of colitis, arthritis and asthma. This seemed to relate to increased production of inflammatory mediators by Gpr43-/- immune cells, and increased immune cell recruitment. Germ-free mice, which are devoid of bacteria and express little or no SCFAs, showed a similar dysregulation of certain inflammatory responses. GPR43 binding of SCFAs potentially provides a molecular link between diet, gastrointestinal bacterial metabolism, and immune and inflammatory responses.


Science | 2008

Identification of host proteins required for HIV infection through a functional genomic screen

Abraham L. Brass; Derek M. Dykxhoorn; Yair Benita; Nan Yan; Alan Engelman; Ramnik J. Xavier; Judy Lieberman; Stephen J. Elledge

HIV-1 exploits multiple host proteins during infection. We performed a large-scale small interfering RNA screen to identify host factors required by HIV-1 and identified more than 250 HIV-dependency factors (HDFs). These proteins participate in a broad array of cellular functions and implicate new pathways in the viral life cycle. Further analysis revealed previously unknown roles for retrograde Golgi transport proteins (Rab6 and Vps53) in viral entry, a karyopherin (TNPO3) in viral integration, and the Mediator complex (Med28) in viral transcription. Transcriptional analysis revealed that HDF genes were enriched for high expression in immune cells, suggesting that viruses evolve in host cells that optimally perform the functions required for their life cycle. This effort illustrates the power with which RNA interference and forward genetics can be used to expose the dependencies of human pathogens such as HIV, and in so doing identify potential targets for therapy.


Nature | 2011

Genetics and pathogenesis of inflammatory bowel disease

Bernard Khor; Agnès Gardet; Ramnik J. Xavier

Recent advances have provided substantial insight into the maintenance of mucosal immunity and the pathogenesis of inflammatory bowel disease. Cellular programs responsible for intestinal homeostasis use diverse intracellular and intercellular networks to promote immune tolerance, inflammation or epithelial restitution. Complex interfaces integrate local host and microbial signals to activate appropriate effector programs selectively and even drive plasticity between these programs. In addition, genetic studies and mouse models have emphasized the role of genetic predispositions and how they affect interactions with microbial and environmental factors, leading to pro-colitogenic perturbations of the host–commensal relationship.


Nature | 2008

A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells

Ken Cadwell; John Y. Liu; Sarah L. Brown; Hiroyuki Miyoshi; Joy Loh; Jochen K. Lennerz; Chieko Kishi; Wumesh Kc; Javier A. Carrero; Steven R. Hunt; Christian D. Stone; Elizabeth M. Brunt; Ramnik J. Xavier; Barry P. Sleckman; Ellen Li; Noboru Mizushima; Thaddeus S. Stappenbeck; Herbert W. Virgin

Susceptibility to Crohn’s disease, a complex inflammatory disease involving the small intestine, is controlled by over 30 loci. One Crohn’s disease risk allele is in ATG16L1, a gene homologous to the essential yeast autophagy gene ATG16 (ref. 2). It is not known how ATG16L1 or autophagy contributes to intestinal biology or Crohn’s disease pathogenesis. To address these questions, we generated and characterized mice that are hypomorphic for ATG16L1 protein expression, and validated conclusions on the basis of studies in these mice by analysing intestinal tissues that we collected from Crohn’s disease patients carrying the Crohn’s disease risk allele of ATG16L1. Here we show that ATG16L1 is a bona fide autophagy protein. Within the ileal epithelium, both ATG16L1 and a second essential autophagy protein ATG5 are selectively important for the biology of the Paneth cell, a specialized epithelial cell that functions in part by secretion of granule contents containing antimicrobial peptides and other proteins that alter the intestinal environment. ATG16L1- and ATG5-deficient Paneth cells exhibited notable abnormalities in the granule exocytosis pathway. In addition, transcriptional analysis revealed an unexpected gain of function specific to ATG16L1-deficient Paneth cells including increased expression of genes involved in peroxisome proliferator-activated receptor (PPAR) signalling and lipid metabolism, of acute phase reactants and of two adipocytokines, leptin and adiponectin, known to directly influence intestinal injury responses. Importantly, Crohn’s disease patients homozygous for the ATG16L1 Crohn’s disease risk allele displayed Paneth cell granule abnormalities similar to those observed in autophagy-protein-deficient mice and expressed increased levels of leptin protein. Thus, ATG16L1, and probably the process of autophagy, have a role within the intestinal epithelium of mice and Crohn’s disease patients by selective effects on the cell biology and specialized regulatory properties of Paneth cells.


Immunity | 1998

Membrane Compartmentation Is Required for Efficient T Cell Activation

Ramnik J. Xavier; Todd Brennan; Qingqin Li; Christine McCormack; Brian Seed

The plasma membrane of mammalian cells contains detergent-resistant membrane rafts enriched in glycosphingolipids and cholesterol. Although several important signaling molecules have been found in such rafts, evidence documenting a functional role for their localization has been scarce. Using a fractionation scheme that preserves tyrosine phosphorylation, we show that T cell activation leads to a striking compartmentation in the rafts of activated T cell receptor and associated signal-transducing molecules. Conditions that reversibly disrupt raft structure either by dispersing their contents or by forcing their internalization reversibly disrupt the earliest steps of T cell activation. Thus, raft integrity is a prerequisite for efficient T cell receptor signal transduction.


Genome Biology | 2012

Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment

Xochitl C. Morgan; Timothy L. Tickle; Harry Sokol; Dirk Gevers; Kathryn Devaney; Doyle V. Ward; Joshua Reyes; Samir A. Shah; Neal S. Leleiko; Scott B. Snapper; Athos Bousvaros; Joshua R. Korzenik; Bruce E. Sands; Ramnik J. Xavier; Curtis Huttenhower

BackgroundThe inflammatory bowel diseases (IBD) Crohns disease and ulcerative colitis result from alterations in intestinal microbes and the immune system. However, the precise dysfunctions of microbial metabolism in the gastrointestinal microbiome during IBD remain unclear. We analyzed the microbiota of intestinal biopsies and stool samples from 231 IBD and healthy subjects by 16S gene pyrosequencing and followed up a subset using shotgun metagenomics. Gene and pathway composition were assessed, based on 16S data from phylogenetically-related reference genomes, and associated using sparse multivariate linear modeling with medications, environmental factors, and IBD status.ResultsFirmicutes and Enterobacteriaceae abundances were associated with disease status as expected, but also with treatment and subject characteristics. Microbial function, though, was more consistently perturbed than composition, with 12% of analyzed pathways changed compared with 2% of genera. We identified major shifts in oxidative stress pathways, as well as decreased carbohydrate metabolism and amino acid biosynthesis in favor of nutrient transport and uptake. The microbiome of ileal Crohns disease was notable for increases in virulence and secretion pathways.ConclusionsThis inferred functional metagenomic information provides the first insights into community-wide microbial processes and pathways that underpin IBD pathogenesis.


Cell | 1998

Tumor Induction of VEGF Promoter Activity in Stromal Cells

Dai Fukumura; Ramnik J. Xavier; Takeyuki Sugiura; Yi Chen; Eun-Chung Park; Naifang Lu; Martin K. Selig; Gunnlaugur P. Nielsen; Tatyana Taksir; Rakesh K. Jain; Brian Seed

We have established a line of transgenic mice expressing the A. victoria green fluorescent protein (GFP) under the control of the promoter for vascular endothelial growth factor (VEGF). Mice bearing the transgene show green cellular fluorescence around the healing margins and throughout the granulation tissue of superficial ulcerative wounds. Implantation of solid tumors in the transgenic mice leads to an accumulation of green fluorescence resulting from tumor induction of host VEGF promoter activity. With time, the fluorescent cells invade the tumor and can be seen throughout the tumor mass. Spontaneous mammary tumors induced by oncogene expression in the VEGF-GFP mouse show strong stromal, but not tumor, expression of GFP. In both wound and tumor models the predominant GFP-positive cells are fibroblasts. The finding that the VEGF promoter of nontransformed cells is strongly activated by the tumor microenvironment points to a need to analyze and understand stromal cell collaboration in tumor angiogenesis.

Collaboration


Dive into the Ramnik J. Xavier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel K. Podolsky

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cisca Wijmenga

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mihai G. Netea

Radboud University Nijmegen

View shared research outputs
Researchain Logo
Decentralizing Knowledge