Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramon Bragós is active.

Publication


Featured researches published by Ramon Bragós.


IEEE Transactions on Biomedical Engineering | 2004

Transmural versus nontransmural in situ electrical impedance spectrum for healthy, ischemic, and healed myocardium

Yolocuauhtli Salazar; Ramon Bragós; Oscar Casas; Juan Cinca; Javier Rosell

Electrical properties of myocardial tissue are anisotropic due to the complex structure of the myocardial fiber orientation and the distribution of gap junctions. For this reason, measured myocardial impedance may differ depending on the current distribution and direction with respect to myocardial fiber orientation and, consequently, according to the measurement method. The objective of this study is to compare the specific impedance spectra of the myocardium measured using two different methods. One method consisted of transmural measurements using an intracavitary catheter and the other method consisted of nontransmural measurements using a four-needle probe inserted into the epicardium. Using both methods, we provide the in situ specific impedance spectrum (magnitude and phase angle) of normal, ischemic, and infarcted pig myocardium tissue from 1 kHz to 1 MHz. Magnitude spectra showed no significant differences between the measurement techniques. However, the phase angle spectra showed significant differences for normal and ischemic tissues according to the measurement technique. The main difference is encountered after 60 min of acute ischemia in the phase angle spectrum. Healed myocardial tissue showed a small and flat phase angle spectrum in both methods due to the low content of cells in the transmural infarct scar. In conclusion, both transmural and nontransmural measurements of phase angle spectrum allow the differentiation among normal, ischemic, and infarcted tissue.


Physiological Measurement | 2008

An analog front-end enables electrical impedance spectroscopy system on-chip for biomedical applications

Fernando Seoane; Javier Ferreira; Juan José Sanchéz; Ramon Bragós

The increasing number of applications of electrical bioimpedance measurements in biomedical practice, together with continuous advances in textile technology, has encouraged several researchers to make the first attempts to develop portable, even wearable, electrical bioimpedance measurement systems. The main target of these systems is personal and home monitoring. Analog Devices has made available AD5933, a new system-on-chip fully integrated electrical impedance spectrometer, which might allow the implementation of minimum-size instrumentation for electrical bioimpedance measurements. However, AD5933 as such is not suitable for most applications of electrical bioimpedance. In this work, we present a relatively simple analog front-end that adapts AD5933 to a four-electrode strategy, allowing its use in biomedical applications for the first time. The resulting impedance measurements exhibit a very good performance in aspects like load dynamic range and accuracy. This type of minimum-size, system-on-chip-based bioimpedance measurement system would lead researchers to develop and implement light and wearable electrical bioimpedance systems for home and personal health monitoring applications, a new and huge niche for medical technology development.


Measurement Science and Technology | 2012

Basics of broadband impedance spectroscopy measurements using periodic excitations

Benjamin Sanchez; Gerd Vandersteen; Ramon Bragós; Johan Schoukens

Measuring the impedance frequency response of systems by means of frequency sweep electrical impedance spectroscopy (EIS) takes time. An alternative based on broadband signals enables the user to acquire simultaneous impedance response data collection. This is directly reflected in a short measuring time compared to the frequency sweep approach. As a result of this increase in the measuring speed, the accuracy of the impedance spectrum is compromised. The aim of this paper is to study how the choice of the broadband signal can contribute to mitigate this accuracy loss. A review of the major advantages and pitfalls of four different periodic broadband excitations suitable to be used in EIS applications is presented. Their influence on the instrumentation and impedance spectrum accuracy is analyzed. Additionally, the signal processing tools to objectively evaluate the quality of the impedance spectrum are described. In view of the experimental results reported, the impedance spectrum signalto- noise ratio (SNR Z) obtained with multisine or discrete interval binary sequence signals is about 20-30 dB more accurate than maximum length binary sequence or chirp signals.


Growth Factors Journal | 2007

FGF-4 increases in vitro expansion rate of human adult bone marrow-derived mesenchymal stem cells.

Jordi Farré; Santiago Roura; Cristina Prat-Vidal; Carolina Soler-Botija; Anna Llach; Cristina E. Molina; Leif Hove-Madsen; Jordi J. Cairó; Francesc Gòdia; Ramon Bragós; Juan Cinca; Antoni Bayes-Genis

Human bone marrow-derived mesenchymal stem cells (MSCs) exhibit limited in vitro growth. Fibroblast growth factors (FGFs) elicit a variety of biological responses, such as cell proliferation, differentiation and migration. FGF-4 represents one of the FGFs with the highest cell mitogenic activity. We studied the effect of FGF-4 on MSCs growth and pluripotency. MSCs duplication time (Td) was significantly reduced with FGF-4 compared to controls (2.2 ± 0.2 vs. 4.1 ± 0.2 days, respectively; p = 0.03) while BMP-2 and SCF-1 did not exert a significant growth effect. MSC expression of surface markers, differentiation into adipogenic and osteogenic lineages, and baseline expression of cardiomyogenic genes were unaffected by FGF-4. In summary, exogenous FGF-4 increases the rate at which MSC proliferate and has no significant effect on MSC pluripotency.


Physiological Measurement | 1994

A wide-band AC-coupled current source for electrical impedance tomography.

Ramon Bragós; Javier Rosell; Pere J. Riu

A current source suitable for application in electrical impedance tomography (EIT) is described. The first stage of the commercially available current-feedback amplifier AD844 constitutes a current-conveyor implementation and allows the construction of wide-bandwidth current sources, thus avoiding the mismatching and temperature-induced problems that arise in discrete realizations. The lack in gain accuracy of this circuit is overcome by the inclusion of its input buffer in an operational amplifier (op amp) feedback loop. Saturation problems that appear when placing a DC-blocking capacitor between the source and the electrode are solved by a DC feedback that maintains DC voltage at the output near to 0 V without reducing the output impedance of the source. Two AC-coupled current sources, in both inverting and non-inverting configurations, are described and their possible applications to EIT are listed.


Cardiovascular Research | 1998

Passive transmission of ischemic ST segment changes in low electrical resistance myocardial infarct scar in the pig

Juan Cinca; Mark Warren; Antonio Rodrıéguez-Sinovas; Màrius Tresànchez; Ana Carreño; Ramon Bragós; Oscar Casas; Anna Domingo; Jordi Soler-Soler

OBJECTIVES To analyze the passive electrical properties of a healed infarction and assess their role on transmission of contiguous ischemic ST segment potential changes. METHODS We measured tissue resistivity (omega cm) at 1 kHz and the epicardial ST segment during 1 h of proximal reocclusion of the left anterior descending (LAD) coronary artery in 12 anesthetized pigs with one-month-old transmural infarction elicited by LAD ligature below the first branch. The impedance spectrum (1 to 1000 kHz) of normal and infarcted myocardium was measured in seven other pigs with similar infarctions. Electrical transmission of current pulses (30 microA) in infarcted tissue and in test solutions was also investigated. RESULTS The infarct scar has a lower than normal resistivity (110 +/- 30 omega cm vs. 235 +/- 60 omega cm, p < 0.0001) and, unlike the normal myocardium, resistivity and phase angle of the scar did not change at increasing current frequencies, reflecting no capacitative response. LAD reocclusion induced a resistivity rise (510 +/- 135 omega cm, p < 0.01) and a ST segment elevation (0.6 +/- 0.7 to 9.5 +/- 5.1 mV, p = 0.002) in the ischemic peri-infarction zone, whereas the infarcted area showed ST segment elevation (0.5 +/- 0.5 to 3.8 +/- 2.6 mV, p = 0.03) with no resistivity changes. Potential decay of both ST segment and current pulses in the scar and in 0.9% NaCl solution was less than 1 mV/mm. Transmural deposition of connective tissue was seen in the center of the infarction. CONCLUSIONS A one-month-old transmural infarction is a low resistance, noncapacitative medium that allows a good transmission of current pulses and of ST segment potential changes generated by contiguous peri-infarction ischemia.


IEEE Transactions on Biomedical Engineering | 2011

Novel Estimation of the Electrical Bioimpedance Using the Local Polynomial Method. Application to In Vivo Real-Time Myocardium Tissue Impedance Characterization During the Cardiac Cycle

Benjamin Sanchez; Johan Schoukens; Ramon Bragós; Gerd Vandersteen

Classical measurements of myocardium tissue electrical impedance for characterizing the morphology of myocardium cells, as well as cell membranes integrity and intra/extra cellular spaces, are based on the frequency-sweep electrical impedance spectroscopy (EIS) technique. In contrast to the frequency-sweep EIS approach, measuring with broadband signals, i.e., multisine excitations, enables to collect, simultaneously, multiple myocardium tissue impedance data in a short measuring time. However, reducing the measuring time makes the measurements to be prone to the influence of the transients introduced by noise and the dynamic time-varying properties of tissue. This paper presents a novel approach for the impedance-frequency-response estimation based on the local polynomial method (LPM). The fast LPM version presented rejects the leakage errors influence on the impedance frequency response when measuring electrical bioimpedance in a short time. The theory is supported by a set of validation measurements. Novel preliminary experimental results obtained from real-time in vivo healthy myocardium tissue impedance characterization within the cardiac cycle using multisine excitation are reported.


Measurement Science and Technology | 2011

Optimal multisine excitation design for broadband electrical impedance spectroscopy

Benjamin Sanchez; Gerd Vandersteen; Ramon Bragós; Johan Schoukens

Electrical impedance spectroscopy (EIS) can be used to characterize biological materials in applications ranging from cell culture to body composition, including tissue and organ state. The emergence of cell therapy and tissue engineering opens up a new and promising field of application. While in most cases classical measurement techniques based on a frequency sweep can be used, EIS based on broadband excitations enables dynamic biological systems to be characterized when the measuring time and injected energy are a constraint. Myocardial regeneration, cell characterization in micro-fluidic systems and dynamic electrical impedance tomography are all examples of such applications. The weakness of such types of fast EIS measuring techniques resides in their intrinsic loss of accuracy. However, since most of the practical applications have no restriction over the excitation used, the input power spectrum can be appropriately designed to maximize the accuracy obtained from the measurements. This paper deals with the problem of designing the optimal multisine excitation for electrical bioimpedance measurements. The optimal multisine is obtained by the minimization of the Cramer–Rao lower bound, or what is the same, by maximizing the accuracy obtained from the measurements. Furthermore, because no analytical solution exists for global optimization involving time and frequency domains jointly, this paper presents the multisine optimization approach partially in both domains and then combines the results. As regards the frequency domain approach, a novel contribution is made for the multisine amplitude power spectrum. In the time domain, multisine is optimized by reducing its crest factor. Moreover, the impact on the information and accuracy of the impedance spectrum obtained from using different multisine amplitude power spectra is discussed, as well as the number of frequencies and frequency distributions. The theory is supported by a set of validation measurements when exciting with the optimal and flat multisine signals and compared to a single frequency ac impedance analyzer when characterizing an RC circuit. In vivo healthy myocardium tissue electrical impedance measurements show that broadband EIS based on multisine excitations enable the characterization of dynamic biological systems.


BioTechniques | 2004

Design and performance of an electrical stimulator for long-term contraction of cultured muscle cells

Mario Marotta; Ramon Bragós; Anna M. Gómez-Foix

Excitability in muscle cells manifests itself as contractility and may be evoked by electrical stimulation. Here we describe an electrical stimulator device applicable to cells seeded on standard multiwell plates and demonstrate how it effectively stimulates synchronous contraction of skeletal muscle C2C12 cells without damaging them. The electrical stimulator of cultured cells (ESCC) consists of two connection cards and a network of platinum electrodes positioned in such way that each well in a row is uniformly stimulated. The ESCC may produce a range of outputs based on the stimulation parameters it receives from a commercial pulse generator and can be placed in a standard cell incubator, allowing for long-term stimulation as required for biochemical and molecular biological assays. We show that a 90-min stimulation of C2C12 myotubes at 50 V, 30 ms of pulse duration, and 3 Hz of frequency enhances glucose metabolism and glycogen mobilization while oppositely modulating the activity ratio of glycogen metabolizing enzymes. Thus, we demonstrate that long-term electrical stimulation of C2C12 myotubes with the ESCC results in contractility and metabolic changes, as seen in exercising muscle.


Talanta | 2008

Development of a portable biosensor for screening neurotoxic agents in water samples.

Alain Hildebrandt; Jordi Ribas; Ramon Bragós; Jean-Louis Marty; Màrius Tresànchez; Silvia Lacorte

A high sensitive portable biosensor system capable of determining the presence of neurotoxic agents in water has been developed. The system consists of (i) a screen-printed electrode with acetylcholinesterase (AChE) immobilized on it, (ii) a self-developed portable potentiostat with an analog to digital (A/D) converter and a serial interface for transferring data to a portable PC and (iii) an own designed software, developed with Lab-Windows CVI, used to record and process the measurements. The system has been developed to perform high precision amperometrical measurements with low drifts, low noise and a good reproducibility. In the configuration depicted, the percentage of AChE inhibition is proportional to the content of neurotoxic agents in a sample. This type of measurement is performed by the steady-state method from the first steady current (by a phosphate buffer solution) and the second steady current (by an enzymatic reaction produced by the addition of acetylthiocholine chloride to the solution). Validation was performed by analyzing spiked water samples containing pesticides. The design is specially suited for screening purposes, does not need sample preconcentration, is totally autonomous and suitable for the field detection of neurotoxic agents in water.

Collaboration


Dive into the Ramon Bragós's collaboration.

Top Co-Authors

Avatar

Benjamin Sanchez

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Pere J. Riu

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Javier Rosell

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Javier Rosell-Ferrer

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Jordi J. Cairó

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

A. Fontova

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Juan Cinca

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Antoni Bayes-Genis

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Francesc Gòdia

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

E. Sarró

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge