Ramón Castañeda-Priego
Universidad de Guanajuato
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ramón Castañeda-Priego.
Journal of Chemical Physics | 2005
Elisabeth Schöll-Paschinger; Ana Laura Benavides; Ramón Castañeda-Priego
The vapor-liquid phase behavior and the critical behavior of the square-well (SW) fluid are investigated as a function of the interaction range, lambdain [1.25, 3], by means of the self-consistent Ornstein-Zernike approximation (SCOZA) and analytical equations of state based on a perturbation theory [A. L. Benavides and F. del Rio, Mol. Phys. 68, 983 (1989); A. Gil-Villegas, F. del Rio, and A. L. Benavides, Fluid Phase Equilib. 119, 97 (1996)]. For this purpose the SCOZA, which has been restricted up to now to a few model systems, has been generalized to hard-core systems with arbitrary interaction potentials requiring a fully numerical solution of an integro-partial differential equation. Both approaches, in general, describe well the liquid-vapor phase diagram of the square-well fluid when compared with simulation data. SCOZA yields very precise predictions for the coexistence curves in the case of long ranged SW interaction (lambda>1.5), and the perturbation theory is able to predict the binodal curves and the saturated pressures, for all interaction ranges considered if one stays away from the critical region. In all cases, the SCOZA gives very good predictions for the critical temperatures and the critical pressures, while the perturbation theory approach tends to slightly overestimate these quantities. Furthermore, we propose analytical expressions for the critical temperatures and pressures as a function of the square-well range.
Langmuir | 2012
Aaron P. R. Eberle; Ramón Castañeda-Priego; Jung M. Kim; Norman J. Wagner
We report an experimental study of the dynamical arrest transition for a model system consisting of octadecyl coated silica suspended in n-tetradecane from dilute to concentrated conditions spanning the state diagram. The dispersions interparticle potential is tuned by temperature affecting the brush conformation leading to a thermoreversible model system. The critical temperature for dynamical arrest, T*, is determined as a function of dispersion volume fraction by small-amplitude dynamic oscillatory shear rheology. We corroborate this transition temperature by measuring a power-law decay of the autocorrelation function and a loss of ergodicity via fiber-optic quasi-elastic light scattering. The structure at T* is measured using small-angle neutron scattering. The scattering intensity is fit to extract the interparticle pair-potential using the Ornstein-Zernike equation with the Percus-Yevick closure approximation, assuming a square-well interaction potential with a short-range interaction (1% of particle diameter). (1) The strength of attraction is characterized using the Baxter temperature (2) and mapped onto the adhesive hard sphere state diagram. The experiments show a continuous dynamical arrest transition line that follows the predicted dynamical percolation line until ϕ ≈ 0.41 where it subtends the predictions toward the mode coupling theory attractive-driven glass line. An alternative analysis of the phase transition through the reduced second virial coefficient B(2)* shows a change in the functional dependence of B(2)* on particle concentration around ϕ ≈ 0.36. We propose this signifies the location of a gel-to-glass transition. The results presented herein differ from those observed for depletion flocculated dispersion of micrometer-sized particles in polymer solutions, where dynamical arrest is a consequence of multicomponent phase separation, suggesting dynamical arrest is sensitive to the physical mechanism of attraction.
Journal of Chemical Physics | 2012
Néstor E. Valadez-Pérez; Ana Laura Benavides; Elisabeth Schöll-Paschinger; Ramón Castañeda-Priego
The fluid phase behavior of colloidal suspensions with short-range attractive interactions is studied by means of Monte Carlo computer simulations and two theoretical approximations, namely, the discrete perturbation theory and the so-called self-consistent Ornstein-Zernike approximation. The suspensions are modeled as hard-core attractive Yukawa (HCAY) and Asakura-Oosawa (AO) fluids. A detailed comparison of the liquid-vapor phase diagrams obtained through different routes is presented. We confirm Noro-Frenkels extended law of scaling according to which the properties of a short-ranged fluid at a given temperature and density are independent of the detailed form of the interaction, but just depend on the value of the second virial coefficient. By mapping the HCAY and AO fluids onto an equivalent square-well fluid of appropriate range at the critical point we show that the critical temperature as a function of the effective range is independent of the interaction potential, i.e., all curves fall in a master curve. Our findings are corroborated with recent experimental data for lysozyme proteins.
New Journal of Physics | 2006
Jure Dobnikar; Ramón Castañeda-Priego; H. H. von Grünberg; Emmanuel Trizac
Combining cell and Jellium model mean-field approaches, Monte Carlo together with integral equation techniques, and finally more demanding many-colloid mean-field computations, we investigate the thermodynamic behaviour, pressure and compressibility of highly-charged colloidal dispersions, and at a more microscopic level, the force distribution acting on the colloids. The Kirkwood-Buff identity provides a useful probe to challenge the self- consistency of an approximate effective screened Coulomb (Yukawa) potential between colloids. Two effective parameter models are put to the test: cell against renormalized Jellium models.
Journal of Chemical Physics | 2013
P. Douglas Godfrin; Ramón Castañeda-Priego; Yun Liu; Norman J. Wagner
Colloidal dispersions with a short-range attraction and long-range repulsion can exhibit an intriguing intermediate range order, manifested in scattering experiments as a low-q peak in the structure factor. Monte Carlo simulations are performed on fluids that exhibit intermediate range order to explicitly determine its connection to a possible state of microphase separation, equilibrium clustering. This is accomplished by decomposing the structure factor into cluster-cluster, monomer-monomer, and cross-correlations that cannot be extracted from experimental scattering patterns. Our simulation results indicate that the intermediate range order arises from either monomeric or cluster species, depending on solution conditions, and reflects the presence of a preferred length scale that is not trivially related to the interparticle potential. Further, criteria are established to define monomer, cluster, and percolated states in these systems that facilitate further studies. Combining scattering techniques with simulations provides an effective method for identifying clustered states in complex fluids.
Physical Review Letters | 2008
Luis Fernando Rojas-Ochoa; Ramón Castañeda-Priego; Vladimir Lobaskin; Anna Stradner; Frank Scheffold; Peter Schurtenberger
We determine the structure of charge-stabilized colloidal suspensions at low ionic strength over an extended range of particle volume fractions using a combination of light and small angle neutron scattering experiments. The variation of the structure factor with concentration is analyzed within a one-component model of a colloidal suspension. We show that the observed structural behavior corresponds to a nonmonotonic density dependence of the colloid effective charge and the mean interparticle interaction energy. Our findings are corroborated by similar observations from primitive model computer simulations of salt-free colloidal suspensions.
European Physical Journal-special Topics | 2013
F. Evers; Richard D. L. Hanes; Christoph Zunke; Ronja Capellmann; Jörg Bewerunge; Cécile Dalle-Ferrier; Matthew C. Jenkins; Imad Ladadwa; Andreas Heuer; Ramón Castañeda-Priego; Stefan U. Egelhaaf
The dynamics of colloidal particles in potential energy landscapes have mainly been investigated theoretically. In contrast, here we discuss the experimental realization of potential energy landscapes with the help of laser light fields and the observation of the particle dynamics by video microscopy. The experimentally observed dynamics in periodic and random potentials are compared to simulation and theoretical results in terms of, e.g. the mean-squared displacement, the time-dependent diffusion coefficient or the non-Gaussian parameter. The dynamics are initially diffusive followed by intermediate subdiffusive behaviour which again becomes diffusive at long times. How pronounced and extended the different regimes are, depends on the specific conditions, in particular the shape of the potential as well as its roughness or amplitude but also the particle concentration. Here we focus on dilute systems, but the dynamics of interacting systems in external potentials, and thus the interplay between particle-particle and particle-potential interactions, are also mentioned briefly. Furthermore, the observed dynamics of dilute systems resemble the dynamics of concentrated systems close to their glass transition, with which it is compared. The effect of certain potential energy landscapes on the dynamics of individual particles appears similar to the effect of interparticle interactions in the absence of an external potential.
Journal of Chemical Physics | 2015
Florian Platten; Néstor E. Valadez-Pérez; Ramón Castañeda-Priego; Stefan U. Egelhaaf
The so-called extended law of corresponding states, as proposed by Noro and Frenkel [J. Chem. Phys. 113, 2941 (2000)], involves a mapping of the phase behaviors of systems with short-range attractive interactions. While it has already extensively been applied to various model potentials, here we test its applicability to protein solutions with their complex interactions. We successfully map their experimentally determined metastable gas-liquid binodals, as available in the literature, to the binodals of short-range square-well fluids, as determined by previous as well as new Monte Carlo simulations. This is achieved by representing the binodals as a function of the temperature scaled with the critical temperature (or as a function of the reduced second virial coefficient) and the concentration scaled by the cube of an effective particle diameter, where the scalings take into account the attractive and repulsive contributions to the interaction potential, respectively. The scaled binodals of the protein solutions coincide with simulation data of the adhesive hard-sphere fluid. Furthermore, once the repulsive contributions are taken into account by the effective particle diameter, the temperature dependence of the reduced second virial coefficients follows a master curve that corresponds to a linear temperature dependence of the depth of the square-well potential. We moreover demonstrate that, based on this approach and cloud-point measurements only, second virial coefficients can be estimated, which we show to agree with values determined by light scattering or by Derjaguin-Landau-Verwey-Overbeek (DLVO)-based calculations.
Physical Review E | 2006
Ramón Castañeda-Priego; Luis F. Rojas-Ochoa; Vladimir Lobaskin; J. C. Mixteco-Sanchez
We study macroion correlation effects on the thermodynamics of highly charged colloidal suspensions using a mean-field theory and primitive model computer simulations. We suggest a simple way to include the macroion correlations into the mean-field theory as an extension of the renormalized jellium model of Trizac and Levin [Phys. Rev. E 69, 031403 (2004)]. The effective screening parameters extracted from our mean-field approach are then used in a one-component model with macroions interacting via a Yukawa-like potential to predict macroion distributions. We find that inclusion of macroion correlations leads to a weaker screening and hence smaller effective macroion charge and lower osmotic pressure of the colloidal dispersion as compared to other mean-field models. This result is supported by comparison to primitive model simulations and experiments for charged macroions in the low-salt regime, where the macroion correlations are expected to be significant.
Physical Review E | 2007
Emmanuel Trizac; Luc Belloni; Jure Dobnikar; H. H. von Grünberg; Ramón Castañeda-Priego
Our interest goes to the different virial contributions to the equation of state of charged colloidal suspensions. Neglect of surface effects in the computation of the colloidal virial term leads to spurious and paradoxical results. This pitfall is one of the several facets of the danger of a naive implementation of the so called one component model, where the microionic degrees of freedom are integrated out to only keep in the description the mesoscopic (colloidal) degrees of freedom. On the other hand, due incorporation of wall induced forces dissolves the paradox brought forth in the naive approach, provides a consistent description, and confirms that for salt-free systems, the colloidal contribution to the pressure is dominated by the microionic one. Much emphasis is put on the no salt case but the situation with added electrolyte is also discussed.