Ramón Hegedüs
University of Girona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ramón Hegedüs.
Journal of The Optical Society of America A-optics Image Science and Vision | 2007
Ramón Hegedüs; Susanne Åkesson; Gábor Horváth
The distribution of polarization in the overcast sky has been practically unknown. Earlier the polarization of light from heavily overcast skies (when the Suns disc was invisible) has been measured only sporadically in some celestial points by point-source polarimetry. What kind of patterns of the degree p and angle alpha of linear polarization of light could develop after transmission through a thick layer of ice or water clouds? To answer this question, we measured the p and alpha patterns of numerous totally overcast skies on the Arctic Ocean and in Hungary by full-sky imaging polarimetry. We present here our finding that depending on the optical thickness of the cloud layer, the pattern of alpha of light transmitted through the ice or water clouds of totally overcast skies is qualitatively the same as the alpha pattern of the clear sky. Under overcast conditions the value of alpha is determined predominantly by scattering on cloud particles themselves. Nevertheless, the degrees of linear polarization of light from overcast skies were rather low (p<or=16%). Our results obtained under overcast conditions complete the earlier findings that the alpha pattern of the clear sky also appears in partly cloudy, foggy, and smoky skies. Our results show that the celestial distribution of the direction of polarization is a very robust pattern being qualitatively always the same under all possible sky conditions. This is of great importance for the orientation of polarization-sensitive animals based on sky polarization under conditions when the Sun is not visible.
Hegedüs, R; Akesson, S; Wehner, R; Horváth, G (2007). Could Vikings have navigated under foggy and cloudy conditions by skylight polarization? On the atmospheric optical prerequisites of polarimetric Viking navigation under foggy and cloudy skies. Proceedings of the Royal Society of London, Series A, 463(2080):1081-1095. | 2007
Ramón Hegedüs; Susanne Åkesson; Ruediger Wehner; Gábor Horváth
In sunshine, the Vikings navigated on the open sea using sundials. According to a widespread hypothesis, when the Sun was occluded by fog or clouds the Vikings might have navigated by skylight polarization detected with an enigmatic birefringent crystal (sunstone). There are two atmospheric optical prerequisites for this alleged polarimetric Viking navigation under foggy/cloudy skies: (1) the degree of linear polarization p of skylight should be high enough and (2) at a given Sun position, the pattern of the angle of polarization α of the foggy/cloudy sky should be similar to that of the clear sky. Until now, these prerequisites have not been investigated. Using full-sky imaging polarimetry, we measured the p- and α-patterns of Arctic foggy and cloudy skies when the Sun was invisible. These patterns were compared with the polarization patterns of clear Arctic skies. We show here that although prerequisite (2) is always fulfilled under both foggy and cloudy conditions, if the fog layer is illuminated by direct sunlight, prerequisite (1) is usually satisfied only for cloudy skies. In sunlit fog, the Vikings could have navigated by polarization only, if p of light from the foggy sky was sufficiently high.
Royal Society of London. Proceedings B. Biological Sciences; 277(1688), pp 1643-1650 (2010) | 2010
Gábor Horváth; Miklós Blahó; György Kriska; Ramón Hegedüs; Balázs Gerics; Róbert Farkas; Susanne Åkesson
White horses frequently suffer from malign skin cancer and visual deficiencies owing to their high sensitivity to the ultraviolet solar radiation. Furthermore, in the wild, white horses suffer a larger predation risk than dark individuals because they can more easily be detected. In spite of their greater vulnerability, white horses have been highly appreciated for centuries owing to their natural rarity. Here, we show that blood-sucking tabanid flies, known to transmit disease agents to mammals, are less attracted to white than dark horses. We also demonstrate that tabanids use reflected polarized light from the coat as a signal to find a host. The attraction of tabanids to mainly black and brown fur coats is explained by positive polarotaxis. As the hosts colour determines its attractiveness to tabanids, this parameter has a strong influence on the parasite load of the host. Although we have studied only the tabanid–horse interaction, our results can probably be extrapolated to other host animals of polarotactic tabanids, as the reflection–polarization characteristics of the hosts body surface are physically the same, and thus not species-dependent.
Vision Research | 2006
Ramón Hegedüs; Győző Szél; Gábor Horváth
The light reflected from the metallic-shiny regions of the cuticle of certain beetles belonging to the Scarabaeoidea is known since 1911 to be left-handed circularly polarized. Only photographs of a few selected species of scarabs, taken through left- and right-circular polarizers, have earlier been published. Through a right-circular polarizer these beetles appear more or less dark. This demonstration is, however, inadequate to quantitatively investigate the spatial distribution and the wavelength dependency of the circular polarization of light reflected from the scarab cuticle. In order to overcome this problem, we have developed a portable, rotating analyzer, linear/circular, digital, and imaging polarimeter. We describe here our polarimetric technique and present for the first time the linear and circular polarization patterns of the scarab species Chrysophora chrysochlora, Plusiotis resplendens (Rutelidae), and Cetonischema jousselini (Cetoniidae) in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We found the wavelength- and species-dependent circular polarization patterns in scarabs to be of a rather complex nature. These patterns are worthy of further studies.
Philosophical Transactions of the Royal Society B | 2011
Gábor Horváth; András Barta; István Pomozi; Bence Suhai; Ramón Hegedüs; Susanne Åkesson; Benno Meyer-Rochow; Rüdiger Wehner
Between AD 900 and AD 1200 Vikings, being able to navigate skillfully across the open sea, were the dominant seafarers of the North Atlantic. When the Sun was shining, geographical north could be determined with a special sundial. However, how the Vikings could have navigated in cloudy or foggy situations, when the Suns disc was unusable, is still not fully known. A hypothesis was formulated in 1967, which suggested that under foggy or cloudy conditions, Vikings might have been able to determine the azimuth direction of the Sun with the help of skylight polarization, just like some insects. This hypothesis has been widely accepted and is regularly cited by researchers, even though an experimental basis, so far, has not been forthcoming. According to this theory, the Vikings could have determined the direction of the skylight polarization with the help of an enigmatic birefringent crystal, functioning as a linearly polarizing filter. Such a crystal is referred to as ‘sunstone’ in one of the Vikings sagas, but its exact nature is unknown. Although accepted by many, the hypothesis of polarimetric navigation by Vikings also has numerous sceptics. In this paper, we summarize the results of our own celestial polarization measurements and psychophysical laboratory experiments, in which we studied the atmospheric optical prerequisites of possible sky-polarimetric navigation in Tunisia, Finland, Hungary and the high Arctic.
Applied Optics | 2007
Ramón Hegedüs; Susanne Åkesson; Gábor Horváth
The effects of forest fire smoke on sky polarization and animal orientation are practically unknown. Using full-sky imaging polarimetry, we therefore measured the celestial polarization pattern under a smoky sky in Fairbanks, Alaska, during the forest fire season in August 2005. It is quantitatively documented here that the celestial polarization, a sky attribute that is necessary for orientation of many polarization-sensitive animal species, above Fairbanks on 17 August 2005 was in several aspects anomalous due to the forest fire smoke: (i) The pattern of the degree of linear polarization p of the reddish smoky sky differed considerably from that of the corresponding clear blue sky. (ii) Due to the smoke, p of skylight was drastically reduced (p(max)<or=14%, p(average)<or=8%). (iii) Depending on wavelength and time, the Arago, Babinet, and Brewster neutral points of sky polarization had anomalous positions. We suggest that the disorientation of certain insects observed by Canadian researchers under smoky skies during the forest fire season in August 2003 in British Columbia was the consequence of the anomalous sky polarization caused by the forest fire smoke.
Physiology & Behavior | 2012
Miklós Blahó; Ádám Egri; Ramón Hegedüs; Júlia Katalin Jósvai; Miklós Tóth; Krisztián Kertész; László Péter Biró; György Kriska; Gábor Horváth
The strongest known circular polarization of biotic origin is the left-circularly polarized (LCP) light reflected from the metallic shiny exocuticle of certain beetles of the family Scarabaeidae. This phenomenon has been discovered by Michelson in 1911. Although since 1955 it has been known that the human eye perceives a visual illusion when stimulated by circularly polarized (CP) light, it was discovered only recently that a stomatopod shrimp is able to perceive circular polarization. It is pertinent to suppose that scarab beetles reflecting LCP light in an optical environment (vegetation) being deficient in CP signals may also perceive circular polarization and use it to find each other (mate/conspecifics) as until now it has been believed. We tested this hypothesis in six choice experiments with several hundred individuals of four scarab species: Anomala dubia, Anomala vitis (Coleoptera, Scarabaeidae, Rutelinae), and Cetonia aurata, Potosia cuprea (Coleoptera, Scarabaeidae, Cetoniinae), all possessing left-circularly polarizing exocuticle. From the results of our experiments we conclude that the studied four scarab species are not attracted to CP light when feeding or looking for mate or conspecifics. We demonstrated that the light reflected by host plants of the investigated scarabs is circularly unpolarized. Our results finally solve a puzzle raised over one hundred years ago, when Michaelson discovered that scarab beetles reflect circularly polarized light.
PLOS ONE | 2012
Miklós Blahó; Ádám Egri; Lea Bahidszki; György Kriska; Ramón Hegedüs; Susanne Åkesson; Gábor Horváth
During blood-sucking, female members of the family Tabanidae transmit pathogens of serious diseases and annoy their host animals so strongly that they cannot graze, thus the health of the hosts is drastically reduced. Consequently, a tabanid-resistant coat with appropriate brightness, colour and pattern is advantageous for the host. Spotty coats are widespread among mammals, especially in cattle (Bos primigenius). In field experiments we studied the influence of the size and number of spots on the attractiveness of test surfaces to tabanids that are attracted to linearly polarized light. We measured the reflection-polarization characteristics of living cattle, spotty cattle coats and the used test surfaces. We show here that the smaller and the more numerous the spots, the less attractive the target (host) is to tabanids. We demonstrate that the attractiveness of spotty patterns to tabanids is also reduced if the target exhibits spottiness only in the angle of polarization pattern, while being homogeneous grey with a constant high degree of polarization. Tabanid flies respond strongly to linearly polarized light, and we show that bright and dark parts of cattle coats reflect light with different degrees and angles of polarization that in combination with dark spots on a bright coat surface disrupt the attractiveness to tabanids. This could be one of the possible evolutionary benefits that explains why spotty coat patterns are so widespread in mammals, especially in ungulates, many species of which are tabanid hosts.
Journal of Insect Conservation | 2011
Kristóf Málnás; László Polyák; Éva Prill; Ramón Hegedüs; György Kriska; György Dévai; Gábor Horváth; Szabolcs Lengyel
Freshwater biodiversity is declining faster than marine or terrestrial diversity, yet its drivers are much less known. Although dams were shown to negatively affect river habitats, fragmentation by bridges has received less attention and is not as well understood. We tested whether and how bridges present barriers to aquatic insects by studying mass swarmings of Palingenia longicauda mayflies on river Tisza (NE-Hungary). Behavioural observations showed that upon approaching the bridge, upstream-flying mayflies typically turned back and 86% of them never crossed the bridge. Lack of physical contact showed that the bridge was an optical, rather than a mechanical barrier for the polarotactic mayflies. Imaging polarimetry showed that the bridge disrupted the horizontally polarizing channel guiding the flight of mayflies above the river. Energy loss, demonstrated by calorimetry, and time constraints forced females to lay eggs only downstream from the bridge. Counts of larval skins shed by swarming individuals showed nearly 2 to 1 female per male downstream from the bridge, while sex ratio above the bridge was slightly male-biased. We suggest that the surplus of parthenogenetic females, that produce only female larvae, downstream from the bridge may have led to the observed sex-ratio bias since the construction of the bridge (1942). Our results demonstrate that bridges can be optical barriers for aquatic insects and can cause population-level impacts, such as biased sex ratios, in natural populations. Sex ratio biases due to bridges may decrease effective population size and genetic variability, which may have contributed to the recent extinction of this species from most of Europe.
Applied Optics | 2007
Ramón Hegedüs; András Barta; Balázs Bernáth; Victor Benno Meyer-Rochow; Gábor Horváth
Radiance, color, and polarization of the light in forests combine to create complex optical patterns. Earlier sporadic polarimetric studies in forests were limited by the narrow fields of view of the polarimeters used in such studies. Since polarization patterns in the entire upper hemisphere of the visual environment of forests could be important for forest-inhabiting animals that make use of linearly polarized light for orientation, we measured 180 degrees field-of-view polarization distributions in Finnish forests. From a hot air balloon we also measured the polarization patterns of Hungarian grasslands lit by the rising sun. We found that the pattern of the angle of polarization alpha of sunlit grasslands and sunlit tree canopies was qualitatively the same as that of the sky. We show here that contrary to an earlier assumption, the alpha-pattern characteristic of the sky always remains visible underneath overhead vegetation, independently of the solar elevation and the sky conditions (clear or partly cloudy with visible suns disc), provided the foliage is sunlit and not only when large patches of the clear sky are visible through the vegetation. Since the mirror symmetry axis of the alpha-pattern of the sunlit foliage is the solar-antisolar meridian, the azimuth direction of the sun, occluded by vegetation, can be assessed in forests from this polarization pattern. Possible consequences of this robust polarization feature of the optical environment in forests are briefly discussed with regard to polarization-based animal navigation.