Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramon Massana is active.

Publication


Featured researches published by Ramon Massana.


Applied and Environmental Microbiology | 2001

Application of Denaturing Gradient Gel Electrophoresis (DGGE) To Study the Diversity of Marine Picoeukaryotic Assemblages and Comparison of DGGE with Other Molecular Techniques

Beatriz Díez; Carlos Pedrós-Alió; Terence L. Marsh; Ramon Massana

ABSTRACT We used denaturing gradient gel electrophoresis (DGGE) to study the diversity of picoeukaryotes in natural marine assemblages. Two eukaryote-specific primer sets targeting different regions of the 18S rRNA gene were tested. Both primer sets gave a single band when used with algal cultures and complex fingerprints when used with natural assemblages. The reproducibility of the fingerprints was estimated by quantifying the intensities of the same bands obtained in independent PCR and DGGE analyses, and the standard error of these estimates was less than 2% on average. DGGE fingerprints were then used to compare the picoeukaryotic diversity in samples obtained at different depths and on different dates from a station in the southwest Mediterranean Sea. Both primer sets revealed significant differences along the vertical profile, whereas temporal differences at the same depths were less marked. The phylogenetic composition of picoeukaryotes from one surface sample was investigated by excising and sequencing DGGE bands. The results were compared with an analysis of a clone library and a terminal restriction fragment length polymorphism fingerprint obtained from the same sample. The three PCR-based methods, performed with three different primer sets, revealed very similar assemblage compositions; the same main phylogenetic groups were present at similar relative levels. Thus, the prasinophyte group appeared to be the most abundant group in the surface Mediterranean samples as determined by our molecular analyses. DGGE bands corresponding to prasinophytes were always found in surface samples but were not present in deep samples. Other groups detected were prymnesiophytes, novel stramenopiles (distantly related to hyphochytrids or labyrinthulids), cryptophytes, dinophytes, and pelagophytes. In conclusion, the DGGE method described here provided a reasonably detailed view of marine picoeukaryotic assemblages and allowed tentative phylogenetic identification of the dominant members.


Applied and Environmental Microbiology | 2001

Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing

Beatriz Díez; Carlos Pedrós-Alió; Ramon Massana

ABSTRACT Very small eukaryotic organisms (picoeukaryotes) are fundamental components of marine planktonic systems, often accounting for a significant fraction of the biomass and activity in a system. Their identity, however, has remained elusive, since the small cells lack morphological features for identification. We determined the diversity of marine picoeukaryotes by sequencing cloned 18S rRNA genes in five genetic libraries from North Atlantic, Southern Ocean, and Mediterranean Sea surface waters. Picoplankton were obtained by filter size fractionation, a step that excluded most large eukaryotes and recovered most picoeukaryotes. Genetic libraries of eukaryotic ribosomal DNA were screened by restriction fragment length polymorphism analysis, and at least one clone of each operational taxonomic unit (OTU) was partially sequenced. In general, the phylogenetic diversity in each library was rather great, and each library included many different OTUs and members of very distantly related phylogenetic groups. Of 225 eukaryotic clones, 126 were affiliated with algal classes, especially the Prasinophyceae, the Prymnesiophyceae, the Bacillariophyceae, and the Dinophyceae. A minor fraction (27 clones) was affiliated with clearly heterotrophic organisms, such as ciliates, the chrysomonad Paraphysomonas, cercomonads, and fungi. There were two relatively abundant novel lineages, novel stramenopiles (53 clones) and novel alveolates (19 clones). These lineages are very different from any organism that has been isolated, suggesting that there are previously unknown picoeukaryotes. Prasinophytes and novel stramenopile clones were very abundant in all of the libraries analyzed. These findings underscore the importance of attempts to grow the small eukaryotic plankton in pure culture.


Applied and Environmental Microbiology | 2000

Bacterial Community Structure Associated with a Dimethylsulfoniopropionate-Producing North Atlantic Algal Bloom

José M. González; Rafel Simó; Ramon Massana; Joseph S. Covert; Emilio O. Casamayor; Carlos Pedrós-Alió; Mary Ann Moran

ABSTRACT The bacteria associated with oceanic algal blooms are acknowledged to play important roles in carbon, nitrogen, and sulfur cycling, yet little information is available on their identities or phylogenetic affiliations. Three culture-independent methods were used to characterize bacteria from a dimethylsulfoniopropionate (DMSP)-producing algal bloom in the North Atlantic. Group-specific 16S rRNA-targeted oligonucleotides, 16S ribosomal DNA (rDNA) clone libraries, and terminal restriction fragment length polymorphism analysis all indicated that the marine Roseobacter lineage was numerically important in the heterotrophic bacterial community, averaging >20% of the 16S rDNA sampled. Two other groups of heterotrophic bacteria, the SAR86 and SAR11 clades, were also shown by the three 16S rRNA-based methods to be abundant in the bloom community. In surface waters, the Roseobacter, SAR86, and SAR11 lineages together accounted for over 50% of the bacterial rDNA and showed little spatial variability in abundance despite variations in the dominant algal species. Depth profiles indicated thatRoseobacter phylotype abundance decreased with depth and was positively correlated with chlorophyll a, DMSP, and total organic sulfur (dimethyl sulfide plus DMSP plus dimethyl sulfoxide) concentrations. Based on these data and previous physiological studies of cultured Roseobacter strains, we hypothesize that this lineage plays a role in cycling organic sulfur compounds produced within the bloom. Three other abundant bacterial phylotypes (representing a cyanobacterium and two members of the α Proteobacteria) were primarily associated with chlorophyll-rich surface waters of the bloom (0 to 50 m), while two others (representing Cytophagales and δProteobacteria) were primarily found in deeper waters (200 to 500 m).


Nucleic Acids Research | 2012

The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy

Laure Guillou; Dipankar Bachar; Stéphane Audic; David Bass; Cédric Berney; Lucie Bittner; Christophe Boutte; Gaétan Burgaud; Colomban de Vargas; Johan Decelle; Javier Campo; John R. Dolan; Micah Dunthorn; Bente Edvardsen; Maria Holzmann; Wiebe H. C. F. Kooistra; Enrique Lara; Noan Le Bescot; Ramiro Logares; Frédéric Mahé; Ramon Massana; Marina Montresor; Raphaël Morard; Fabrice Not; Jan Pawlowski; Ian Probert; Anne-Laure Sauvadet; Raffaele Siano; Thorsten Stoeck; Daniel Vaulot

The interrogation of genetic markers in environmental meta-barcoding studies is currently seriously hindered by the lack of taxonomically curated reference data sets for the targeted genes. The Protist Ribosomal Reference database (PR2, http://ssu-rrna.org/) provides a unique access to eukaryotic small sub-unit (SSU) ribosomal RNA and DNA sequences, with curated taxonomy. The database mainly consists of nuclear-encoded protistan sequences. However, metazoans, land plants, macrosporic fungi and eukaryotic organelles (mitochondrion, plastid and others) are also included because they are useful for the analysis of high-troughput sequencing data sets. Introns and putative chimeric sequences have been also carefully checked. Taxonomic assignation of sequences consists of eight unique taxonomic fields. In total, 136 866 sequences are nuclear encoded, 45 708 (36 501 mitochondrial and 9657 chloroplastic) are from organelles, the remaining being putative chimeric sequences. The website allows the users to download sequences from the entire and partial databases (including representative sequences after clustering at a given level of similarity). Different web tools also allow searches by sequence similarity. The presence of both rRNA and rDNA sequences, taking into account introns (crucial for eukaryotic sequences), a normalized eight terms ranked-taxonomy and updates of new GenBank releases were made possible by a long-term collaboration between experts in taxonomy and computer scientists.


Applied and Environmental Microbiology | 2000

A Few Cosmopolitan Phylotypes Dominate Planktonic Archaeal Assemblages in Widely Different Oceanic Provinces

Ramon Massana; Edward F. DeLong; Carlos Pedrós-Alió

ABSTRACT We compared the phylogenetic compositions of marine planktonic archaeal populations in different marine provinces. Samples from eight different environments were collected at two depths (surface and aphotic zone), and 16 genetic libraries of PCR-amplified archaeal 16S rRNA genes were constructed. The libraries were analyzed by using a three-step hierarchical approach. Membrane hybridization experiments revealed that most of the archaeal clones were affiliated with one of the two groups of marine archaea described previously, crenarchaeotal group I and euryarchaeotal group II. One of the 2,328 ribosomal DNA clones analyzed was related to a different euryarchaeal lineage, which was recently recovered from deep-water marine plankton. In temperate regions (Pacific Ocean, Atlantic Ocean, and Mediterranean Sea) both major groups were found at the two depths investigated; group II predominated at the surface, and group I predominated at depth. In Antarctic and subantarctic waters group II was practically absent. The clonal compositions of archaeal libraries were investigated by performing a restriction fragment length polymorphism (RFLP) analysis with two tetrameric restriction enzymes, which defined discrete operational taxonomic units (OTUs). The OTUs defined in this way were phylogenetically consistent; clones belonging to the same OTU were closely related. The clonal diversity as determined by the RFLP analysis was low, and most libraries were dominated by only one or two OTUs. Some OTUs were found in samples obtained from very distant places, indicating that some phylotypes were ubiquitous. A tree containing one example of each OTU detected was constructed, and this tree revealed that there were several clusters within archaeal group I and group II. The members of some of these clusters had different depth distributions.


Applied and Environmental Microbiology | 2004

Phylogenetic and ecological analysis of novel marine stramenopiles

Ramon Massana; Jose Castresana; Vanessa Balagué; Laure Guillou; Khadidja Romari; Agnès Groisillier; Klaus Valentin; Carlos Pedrós-Alió

ABSTRACT Culture-independent molecular analyses of open-sea microorganisms have revealed the existence and apparent abundance of novel eukaryotic lineages, opening new avenues for phylogenetic, evolutionary, and ecological research. Novel marine stramenopiles, identified by 18S ribosomal DNA sequences within the basal part of the stramenopile radiation but unrelated to any previously known group, constituted one of the most important novel lineages in these open-sea samples. Here we carry out a comparative analysis of novel stramenopiles, including new sequences from coastal genetic libraries presented here and sequences from recent reports from the open ocean and marine anoxic sites. Novel stramenopiles were found in all major habitats, generally accounting for a significant proportion of clones in genetic libraries. Phylogenetic analyses indicated the existence of 12 independent clusters. Some of these were restricted to anoxic or deep-sea environments, but the majority were typical components of coastal and open-sea waters. We specifically identified four clusters that were well represented in most marine surface waters (together they accounted for 74% of the novel stramenopile clones) and are the obvious targets for future research. Many sequences were retrieved from geographically distant regions, indicating that some organisms were cosmopolitan. Our study expands our knowledge on the phylogenetic diversity and distribution of novel marine stramenopiles and confirms that they are fundamental members of the marine eukaryotic picoplankton.


Nature | 2011

Discovery of novel intermediate forms redefines the fungal tree of life

Meredith D. M. Jones; Irene Forn; Catarina Gadelha; Martin J. Egan; David Bass; Ramon Massana; Thomas A. Richards

Fungi are the principal degraders of biomass in terrestrial ecosystems and establish important interactions with plants and animals. However, our current understanding of fungal evolutionary diversity is incomplete and is based upon species amenable to growth in culture. These culturable fungi are typically yeast or filamentous forms, bound by a rigid cell wall rich in chitin. Evolution of this body plan was thought critical for the success of the Fungi, enabling them to adapt to heterogeneous habitats and live by osmotrophy: extracellular digestion followed by nutrient uptake. Here we investigate the ecology and cell biology of a previously undescribed and highly diverse form of eukaryotic life that branches with the Fungi, using environmental DNA analyses combined with fluorescent detection via DNA probes. This clade is present in numerous ecosystems including soil, freshwater and aquatic sediments. Phylogenetic analyses using multiple ribosomal RNA genes place this clade with Rozella, the putative primary branch of the fungal kingdom. Tyramide signal amplification coupled with group-specific fluorescence in situ hybridization reveals that the target cells are small eukaryotes of 3–5 μm in length, capable of forming a microtubule-based flagellum. Co-staining with cell wall markers demonstrates that representatives from the clade do not produce a chitin-rich cell wall during any of the life cycle stages observed and therefore do not conform to the standard fungal body plan. We name this highly diverse clade the cryptomycota in anticipation of formal classification.


Journal of Phycology | 2007

Distribution, phylogeny, and growth of cold-adapted Picoprasinophytes in Arctic Seas

Connie Lovejoy; Warwick F. Vincent; Sylvia Bonilla; Suzanne Roy; Marie-Josée Martineau; Ramon Terrado; Marianne Potvin; Ramon Massana; Carlos Pedrós-Alió

Our pigment analyses from a year‐long study in the coastal Beaufort Sea in the western Canadian Arctic showed the continuous prevalence of eukaryotic picoplankton in the green algal class Prasinophyceae. Microscopic analyses revealed that the most abundant photosynthetic cell types were Micromonas‐like picoprasinophytes that persisted throughout winter darkness and then maintained steady exponential growth from late winter to early summer. A Micromonas (CCMP2099) isolated from an Arctic polynya (North Water Polynya between Ellesmere Island and Greenland), an ice‐free section, grew optimally at 6°C–8°C, with light saturation at or below 10 μmol photons·m−2·s−1 at 0°C. The 18S rDNA analyses of this isolate and environmental DNA clone libraries from diverse sites across the Arctic Basin indicate that this single psychrophilic Micromonas ecotype has a pan‐Arctic distribution. The 18S rDNA from two other picoprasinophyte genera was also found in our pan‐Arctic clone libraries: Bathycoccus and Mantoniella. The Arctic Micromonas differed from genotypes elsewhere in the World Ocean, implying that the Arctic Basin is a marine microbial province containing endemic species, consistent with the biogeography of its macroorganisms. The prevalence of obligate low‐temperature, shade‐adapted species in the phytoplankton indicates that the lower food web of the Arctic Ocean is vulnerable to ongoing climate change in the region.


Applied and Environmental Microbiology | 2006

Diversity and Distribution of Marine Microbial Eukaryotes in the Arctic Ocean and Adjacent Seas

Connie Lovejoy; Ramon Massana; Carlos Pedrós-Alió

ABSTRACT We analyzed microbial eukaryote diversity in perennially cold arctic marine waters by using 18S rRNA gene clone libraries. Samples were collected during concurrent oceanographic missions to opposite sides of the Arctic Ocean Basin and encompassed five distinct water masses. Two deep water Arctic Ocean sites and the convergence of the Greenland, Norwegian, and Barents Seas were sampled from 28 August to 2 September 2002. An additional sample was obtained from the Beaufort Sea (Canada) in early October 2002. The ribotypes were diverse, with different communities among sites and between the upper mixed layer and just below the halocline. Eukaryotes from the remote Canada Basin contained new phylotypes belonging to the radiolarian orders Acantharea, Polycystinea, and Taxopodida. A novel group within the photosynthetic stramenopiles was also identified. One sample closest to the interior of the Canada Basin yielded only four major taxa, and all but two of the sequences recovered belonged to the polar diatom Fragilariopsis and a radiolarian. Overall, 42% of the sequences were <98% similar to any sequences in GenBank. Moreover, 15% of these were <95% similar to previously recovered sequences, which is indicative of endemic or undersampled taxa in the North Polar environment. The cold, stable Arctic Ocean is a threatened environment, and climate change could result in significant loss of global microbial biodiversity.


The EMBO Journal | 2003

Diversification and spectral tuning in marine proteorhodopsins

Dikla Man; Weiwu Wang; Gazalah Sabehi; L. Aravind; Anton F. Post; Ramon Massana; Elena N. Spudich; John L. Spudich; Oded Béjà

Proteorhodopsins, ubiquitous retinylidene photoactive proton pumps, were recently discovered in the cosmopolitan uncultured SAR86 bacterial group in oceanic surface waters. Two related proteorhodopsin families were found that absorb light with different absorption maxima, 525 nm (green) and 490 nm (blue), and their distribution was shown to be stratified with depth. Using structural modeling comparisons and mutagenesis, we report here on a single amino acid residue at position 105 that functions as a spectral tuning switch and accounts for most of the spectral difference between the two pigment families. Furthermore, looking at natural environments, we found novel proteorhodopsin gene clusters spanning the range of 540–505 nm and containing changes in the same identified key switch residue leading to changes in their absorption maxima. The results suggest a simultaneous diversification of green proteorhodopsin and the new key switch variant pigments. Our observations demonstrate that this single‐residue switch mechanism is the major determinant of proteorhodopsin wavelength regulation in natural marine environments.

Collaboration


Dive into the Ramon Massana's collaboration.

Top Co-Authors

Avatar

Josep M. Gasol

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carlos Pedrós-Alió

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ramiro Logares

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Vanessa Balagué

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Irene Forn

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Javier Campo

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Massimo C. Pernice

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Silvia G. Acinas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Dolors Vaqué

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Emilio O. Casamayor

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge