Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramtin Rahbar is active.

Publication


Featured researches published by Ramtin Rahbar.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity

Philipp A. Lang; Karl S. Lang; Haifeng C. Xu; Melanie Grusdat; Ian A. Parish; Mike Recher; Alisha R. Elford; Salim Dhanji; Namir Shaabani; Charles W. Tran; Dilan Dissanayake; Ramtin Rahbar; Magar Ghazarian; Anne Brüstle; Jason P. Fine; Peter W. Chen; Casey T. Weaver; Christoph S.N. Klose; Andreas Diefenbach; Dieter Häussinger; James R. Carlyle; Susan M. Kaech; Tak W. Mak; Pamela S. Ohashi

Infections with HIV, hepatitis B virus, and hepatitis C virus can turn into chronic infections, which currently affect more than 500 million patients worldwide. It is generally thought that virus-mediated T-cell exhaustion limits T-cell function, thus promoting chronic disease. Here we demonstrate that natural killer (NK) cells have a negative impact on the development of T-cell immunity by using the murine lymphocytic choriomeningitis virus. NK cell-deficient (Nfil3−/−, E4BP4−/−) mice exhibited a higher virus-specific T-cell response. In addition, NK cell depletion caused enhanced T-cell immunity in WT mice, which led to rapid virus control and prevented chronic infection in lymphocytic choriomeningitis virus clone 13- and reduced viral load in DOCILE-infected animals. Further experiments showed that NKG2D triggered regulatory NK cell functions, which were mediated by perforin, and limited T-cell responses. Therefore, we identified an important role of regulatory NK cells in limiting T-cell immunity during virus infection.


PLOS ONE | 2010

Influenza Virus Non-Structural Protein 1 (NS1) Disrupts Interferon Signaling

Danlin Jia; Ramtin Rahbar; Renee W. Y. Chan; Suki M. Y. Lee; Michael C. W. Chan; Ben Xuhao Wang; Darren P. Baker; Bing Sun; J. S. Malik Peiris; John M. Nicholls; Eleanor N. Fish

Type I interferons (IFNs) function as the first line of defense against viral infections by modulating cell growth, establishing an antiviral state and influencing the activation of various immune cells. Viruses such as influenza have developed mechanisms to evade this defense mechanism and during infection with influenza A viruses, the non-structural protein 1 (NS1) encoded by the virus genome suppresses induction of IFNs-α/β. Here we show that expression of avian H5N1 NS1 in HeLa cells leads to a block in IFN signaling. H5N1 NS1 reduces IFN-inducible tyrosine phosphorylation of STAT1, STAT2 and STAT3 and inhibits the nuclear translocation of phospho-STAT2 and the formation of IFN-inducible STAT1:1-, STAT1:3- and STAT3:3- DNA complexes. Inhibition of IFN-inducible STAT signaling by NS1 in HeLa cells is, in part, a consequence of NS1-mediated inhibition of expression of the IFN receptor subunit, IFNAR1. In support of this NS1-mediated inhibition, we observed a reduction in expression of ifnar1 in ex vivo human non-tumor lung tissues infected with H5N1 and H1N1 viruses. Moreover, H1N1 and H5N1 virus infection of human monocyte-derived macrophages led to inhibition of both ifnar1 and ifnar2 expression. In addition, NS1 expression induces up-regulation of the JAK/STAT inhibitors, SOCS1 and SOCS3. By contrast, treatment of ex vivo human lung tissues with IFN-α results in the up-regulation of a number of IFN-stimulated genes and inhibits both H5N1 and H1N1 virus replication. The data suggest that NS1 can directly interfere with IFN signaling to enhance viral replication, but that treatment with IFN can nevertheless override these inhibitory effects to block H5N1 and H1N1 virus infections.


Journal of Interferon and Cytokine Research | 2011

Interferon: Current Status and Future Prospects in Cancer Therapy

Ben X. Wang; Ramtin Rahbar; Eleanor N. Fish

Type I interferons (IFNs) exhibit antiproliferative activity and apoptotic effects, and regulate an immune response by activating multiple cells types, including dendritic cells, cytotoxic T cells, and natural killer cells. Most recently, a report in the literature identified dysfunctional induction of a type I IFN response in cancer stem cells--specifically, breast cancer-initiating cells, implicating this defect in progression to breast cancer. Indeed, accumulating evidence suggests that cancer stem cells/cancer-initiating cells are prevalent in leukemias and solid tumors, are resistant to chemotherapy and radiation therapy, and therefore likely contribute to tumor recurrence. IFN-β treatment of human glioma xenografts leads to disruption of the vascular niche of glioma stem cells, in further support of a potential therapeutic effect of IFN treatment in limiting cancer stem cells. The implications are that restoring an IFN response, or enhancing an IFN response, may invoke a reduction, or elimination of both cancer stem cells and tumor cells. In this review, the clinical application of type I IFNs, mainly IFN-αs, will be reviewed.


Journal of Biological Chemistry | 2006

CCL5-CCR5-mediated Apoptosis in T Cells REQUIREMENT FOR GLYCOSAMINOGLYCAN BINDING AND CCL5 AGGREGATION

Thomas T. Murooka; Mark Wong; Ramtin Rahbar; Beata Majchrzak-Kita; Amanda E. I. Proudfoot; Eleanor N. Fish

CCL5 (RANTES (regulated on activation normal T cell expressed and secreted)) and its cognate receptor, CCR5, have been implicated in T cell activation. CCL5 binding to glycosaminoglycans (GAGs) on the cell surface or in extracellular matrix sequesters CCL5, thereby immobilizing CCL5 to provide the directional signal. In two CCR5-expressing human T cell lines, PM1.CCR5 and MOLT4.CCR5, and in human peripheral blood-derived T cells, micromolar concentrations of CCL5 induce apoptosis. CCL5-induced cell death involves the cytosolic release of cytochrome c, the activation of caspase-9 and caspase-3, and poly(ADP-ribose) polymerase cleavage. CCL5-induced apoptosis is CCR5-dependent, since native PM1 and MOLT4 cells lacking CCR5 expression are resistant to CCL5-induced cell death. Furthermore, we implicate tyrosine 339 as a critical residue involved in CCL5-induced apoptosis, since PM1 cells expressing a tyrosine mutant receptor, CCR5Y339F, do not undergo apoptosis. We show that CCL5-CCR5-mediated apoptosis is dependent on cell surface GAG binding. The addition of exogenous heparin and chondroitin sulfate and GAG digestion from the cell surface protect cells from apoptosis. Moreover, the non-GAG binding variant, (44AANA47)-CCL5, fails to induce apoptosis. To address the role of aggregation in CCL5-mediated apoptosis, nonaggregating CCL5 mutant E66S, which forms dimers, and E26A, which form tetramers at micromolar concentrations, were utilized. Unlike native CCL5, the E66S mutant fails to induce apoptosis, suggesting that tetramers are the minimal higher ordered CCL5 aggregates required for CCL5-induced apoptosis. Viewed altogether, these data suggest that CCL5-GAG binding and CCL5 aggregation are important for CCL5 activity in T cells, specifically in the context of CCR5-mediated apoptosis.


Biochemical and Biophysical Research Communications | 2009

CCL5 promotes proliferation of MCF-7 cells through mTOR-dependent mRNA translation

Thomas T. Murooka; Ramtin Rahbar; Eleanor N. Fish

The proliferative capacity of cancer cells is regulated by factors intrinsic to cancer cells and by secreted factors in the microenvironment. Here, we investigated the proto-oncogenic potential of the chemokine receptor, CCR5, in MCF-7 breast cancer cell lines. At physiological levels, CCL5, a ligand for CCR5, enhanced MCF-7.CCR5 proliferation. Treatment with the mTOR inhibitor, rapamycin, inhibited this CCL5-inducible proliferation. Because mTOR directly modulates mRNA translation, we investigated whether CCL5 activation of CCR5 leads to increased translation. CCL5 induced the formation of the eIF4F translation initiation complex through an mTOR-dependent process. Indeed, CCL5 initiated mRNA translation, shown by an increase in high-molecular-weight polysomes. Specifically, we show that CCL5 mediated a rapid up-regulation of protein expression for cyclin D1, c-Myc and Dad-1, without affecting their mRNA levels. Taken together, we describe a mechanism by which CCL5 influences translation of rapamycin-sensitive mRNAs, thereby providing CCR5-positive breast cancer cells with a proliferative advantage.


Journal of Virology | 2006

Vaccinia virus activation of CCR5 invokes tyrosine phosphorylation signaling events that support virus replication.

Ramtin Rahbar; Thomas T. Murooka; Anna A. Hinek; Carole L. Galligan; Antonella Sassano; Celeste Yu; Kishore K. Srivastava; Leonidas C. Platanias; Eleanor N. Fish

ABSTRACT Vaccinia virus, a poxvirus, produces structurally distinct forms of virions for which the immediate events following cell entry are ill-defined. We provide evidence that intracellular mature virus (IMV) enters both permissive and nonpermissive T-cell lines and that introduction of CCR5 into nonpermissive mouse fibroblasts or human primary T cells renders the cells permissive for vaccinia replication. Notably, T cells expressing CCR5 in which tyrosine 339 in the intracellular region is replaced by phenylalanine no longer support virus replication or virus-inducible activation of specific host cell signaling effectors IRS-2, Grb2, and Erk1/2. We show that following IMV entry into the cell, the intact but not the tyrosine-deficient CCR5 is rapidly internalized and colocalizes with virus. This colocalization precedes virus-inducible signaling and replication.


Immunologic Research | 2006

Interferons and viruses : Signaling for supremacy

Carole L. Galligan; Thomas T. Murooka; Ramtin Rahbar; E. Baig; Beata Majchrzak-Kita; Eleanor N. Fish

Interferon (IFN)-α and IFN-β are critical mediators of host defense against microbial challenges, directly interfering with viral infection and influencing both the innate and adaptive immune responses. IFNs exert their effects in target cells through the activation of a cell-surface receptor, leading to a cascade of signaling events that determine transcriptional and translation regulation. Understanding the circuitry associated with IFN-mediated signal transduction that leads to a specific biological outcome has been a major focus of our laboratory. Through the efforts of graduate students, postdoctoral fellows, a skilled research technologist, and important collaborations with investigators elsewhere, we have provided some insights into the complexity of the IFN system—and the elegance and simplicity of how protein-protein interactions define biological function.


Cancer immunology research | 2015

B7-H4 Expression by Nonhematopoietic Cells in the Tumor Microenvironment Promotes Antitumor Immunity

Ramtin Rahbar; Albert Lin; Magar Ghazarian; Helen-Loo Yau; Sangeetha Paramathas; Philipp A. Lang; Anita Schildknecht; Alisha R. Elford; Carlos Garcia-Batres; Bernard Martin; Hal K. Berman; Wey L. Leong; David R. McCready; Michael Reedijk; Susan J. Done; Naomi Miller; Bruce Youngson; Woong-Kyung Suh; Tak W. Mak; Pamela S. Ohashi

Rahbar and colleagues show that B7-H4 promotes antitumor immunity against mouse mammary cancer and insulinomas and that its expression levels correlate with those of MHC class I in mouse and human tumors; high B7-H4 expression is associated with improved recurrence-free survival in breast cancer patients. The B7 family plays a critical role in both positive and negative regulation of immune responses by engaging a variety of receptors on lymphocytes. Importantly, blocking coinhibitory molecules using antibodies specific for CTLA-4 and PD-1 enhances tumor immunity in a subset of patients. Therefore, it is critical to understand the role of different B7 family members since they may be suitable therapeutic targets. B7-H4 is another member that inhibits T-cell function, and it is also upregulated on a variety of tumors and has been proposed to promote tumor growth. Here, we investigate the role of B7-H4 in tumor development and show that B7-H4 expression inhibits tumor growth in two mouse models. Furthermore, we show that B7-H4 expression is required for antitumor immune responses in a mouse model of mammary tumorigenesis. We found that the expression levels of B7-H4 correlate with MHC class I expression in both mouse and human samples. We show that IFNγ upregulates B7-H4 expression on mouse embryo fibroblasts and that the upregulation of B7-H4 on tumors is dependent on T cells. Notably, patients with breast cancer with increased B7-H4 expression show a prolonged time to recurrence. These studies demonstrate a positive role for B7-H4 in promoting antitumor immunity. Cancer Immunol Res; 3(2); 184–95. ©2014 AACR.


Journal of Virology | 2009

Role for CCR5 in Dissemination of Vaccinia Virus In Vivo

Ramtin Rahbar; Thomas T. Murooka; Eleanor N. Fish

ABSTRACT In an earlier report, we provided evidence that expression of CCR5 by primary human T cells renders them permissive for vaccinia virus (VACV) replication. This may represent a mechanism for dissemination throughout the lymphatic system. To test this hypothesis, wild-type CCR5+/+ and CCR5 null mice were challenged with VACV by intranasal inoculation. In time course studies using different infective doses of VACV, we identified viral replication in the lungs of both CCR5+/+ and CCR5−/− mice, yet there were diminished viral loads in the spleens and brains of CCR5−/− mice compared with CCR5+/+ mice. Moreover, in association with VACV infection, we provide evidence for CD4+ and CD8+ T-cell as well as CD11c+ and F4/80+ cell infiltration into the lungs of CCR5+/+ but not CCR5−/− mice, and we show that the CCR5-expressing T cells harbor virus. We demonstrate that this CCR5 dependence is VACV specific, since CCR5−/− mice are as susceptible to intranasal influenza virus (A/WSN/33) infection as CCR5+/+ mice. In a final series of experiments, we provide evidence that adoptive transfer of CCR5+/+ bone marrow leukocytes into CCR5−/− mice restores VACV permissiveness, with evidence of lung and spleen infection. Taken together, our data suggest a novel role for CCR5 in VACV dissemination in vivo.


Open Biology | 2016

CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells

Darrin Gao; Ramtin Rahbar; Eleanor N. Fish

In earlier studies, we showed that CCL5 enhances proliferation and survival of MCF-7 breast cancer cells in an mTOR-dependent manner and we provided evidence that, for T cells, CCL5 activation of CCR5 results in increased glycolysis and enhanced ATP production. Increases in metabolic activity of cancer cells, specifically increased glycolytic activity and increased expression of glucose transporters, are associated with tumour progression. In this report, we provide evidence that CCL5 enhances the proliferation of human breast cancer cell lines (MDA-MB-231, MCF-7) and mouse mammary tumour cells (MMTV-PyMT), mediated by CCR5 activation. Concomitant with enhanced proliferation we show that CCL5 increases cell surface expression of the glucose transporter GLUT1, and increases glucose uptake and ATP production by these cells. Blocking CCL5-inducible glucose uptake abrogates the enhanced proliferation induced by CCL5. We provide evidence that increased glucose uptake is associated with enhanced glycolysis, as measured by extracellular acidification. Moreover, CCL5 enhances the invasive capacity of these breast cancer cells. Using metabolomics, we demonstrate that the metabolic signature of CCL5-treated primary mouse mammary tumour cells reflects increased anabolic metabolism. The implications are that CCL5–CCR5 interactions in the tumour microenvironment regulate metabolic events, specifically glycolysis, to promote tumour proliferation and invasion.

Collaboration


Dive into the Ramtin Rahbar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pamela S. Ohashi

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Lin

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tak W. Mak

University Health Network

View shared research outputs
Top Co-Authors

Avatar

Philipp A. Lang

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Alisha R. Elford

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge