Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramya Mathiyalagan is active.

Publication


Featured researches published by Ramya Mathiyalagan.


Artificial Cells Nanomedicine and Biotechnology | 2015

The development of a green approach for the biosynthesis of silver and gold nanoparticles by using Panax ginseng root extract, and their biological applications

Priyanka Singh; Yeon Ju Kim; Chao Wang; Ramya Mathiyalagan; Deok Chun Yang

The biosynthesis of nanoparticles has received attention because of the development of economic and environmentally friendly technology for the synthesis of nanoparticles. The study develops a convenient method for the green synthesis of silver and gold nanoparticles by utilizing fresh root extract of the four-year old Panax ginseng plant, and evaluated the antimicrobial applications of silver nanoparticles against pathogenic microorganisms. P. ginseng is a well-known herbal medicinal plant, and its active ingredients are mainly ginsenosides. The fresh root of the 4 year old P. ginseng plant has been explored for the synthesis of silver and gold nanoparticles without the use of any additional reducing and capping agents. The reduction of silver nitrate led to the formation of silver nanoparticles within 2 h of reaction at 80°C. The gold nanoparticles were also successfully synthesized by the reduction of auric acid at 80°C, within 5 min of reaction. The biosynthesized gold and silver nanoparticles were characterized by techniques using various instruments, viz. ultraviolet-visible spectroscopy (UV-Vis spectroscopy), field emission transmission electron microscopy (FE-TEM), energy dispersive X-ray analysis (EDX), elemental mapping, and X-ray diffraction (XRD). In addition, the silver nanoparticles have shown antimicrobial potential against Bacillus anthracis, Vibrio parahaemolyticus, Staphylococcus aureus, Escherichia coli, and Bacillus cereus.


Enzyme and Microbial Technology | 2016

Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications

Priyanka Singh; Hina Singh; Yeon Ju Kim; Ramya Mathiyalagan; Chao Wang; Deok Chun Yang

The present study highlights the microbial synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 strain, in an efficient way. The synthesized nanoparticles were characterized by ultraviolet-visible spectrophotometry, which displayed maximum absorbance at 424nm and 531nm for silver and gold nanoparticles, respectively. The spherical shape of nanoparticles was characterized by field emission transmission electron microscopy. The energy dispersive X-ray spectroscopy and elemental mapping were displayed the purity and maximum elemental distribution of silver and gold elements in the respective nanoproducts. The X-ray diffraction spectroscopy results demonstrate the crystalline nature of synthesized nanoparticles. The particle size analysis demonstrate the nanoparticles distribution with respect to intensity, volume and number of nanoparticles. For biological applications, the silver nanoparticles have been explored in terms of MIC and MBC against pathogenic microorganisms such as Vibrio parahaemolyticus, Escherichia coli, Salmonella enterica, Bacillus anthracis, Bacillus cereus and Staphylococcus aureus. Moreover, the silver nanoparticles in combination with commercial antibiotics, such as vancomycin, rifampicin, oleandomycin, penicillin G, novobiocin, and lincomycin have been explored for the enhancement of antibacterial activity and the obtained results showed that 3μg concentration of silver nanoparticles sufficiently enhance the antimicrobial efficacy of commercial antibiotics against pathogenic microorganism. Furthermore, the silver nanoparticles potential has been reconnoitered for the biofilm inhibition by S. aureus, Pseudomonas aeruginosa and E. coli and the results revealed sufficient activity at 6μg concentration. In addition, gold nanoparticles have been applied for catalytic activity, for the reduction of 4-nitrophenol to 4-aminophenol using sodium borohydride and positive results were attained.


Artificial Cells Nanomedicine and Biotechnology | 2015

Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications

Priyanka Singh; Yeon Ju Kim; Chao Wang; Ramya Mathiyalagan; Mohamed El-Agamy Farh; Deok Chun Yang

In the present study, we report a green methodology for the synthesis of silver and gold nanoparticles, using the root extract of the herbal medicinal plant Korean red ginseng. The silver and gold nanoparticles were synthesized within 1 h and 10 min respectively. The nanoparticles generated were not aggregated, and remained stable for a long time, which suggests the nature of nanoparticles. The phytochemicals and ginsenosides present in the root extract assist in reducing and stabilizing the synthesized nanoparticles. The red ginseng root extract-generated silver nanoparticles exhibit antimicrobial activity against pathogenic microorganisms including Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus cereus, and Candida albicans. In addition, the silver nanoparticles exhibit biofilm degrading activity against S. aureus and Pseudomonas aeruginosa. Thus, the present study opens up a new possibility of synthesizing silver and gold nanoparticles in a green and rapid manner using Korean red ginseng root extract, and explores their biomedical applications.


Artificial Cells Nanomedicine and Biotechnology | 2015

Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity.

Chao Wang; Yeon Ju Kim; Priyanka Singh; Ramya Mathiyalagan; Yan Jin; Deok Chun Yang

The synthesis of silver nanoparticles (AgNPs) by microorganisms is an area attracting growing interest in nanobiotechnology, due to the applications of these nanoparticles in various products including cosmetics and biosensors, and in the biomedical, clinical, and bioimaging fields as well. Various microorganisms have been found to be able to synthesize AgNPs when silver salts are supplied in the reaction system. The main objectives of this study were to evaluate the efficiency of synthesis of AgNPs by the strain Bacillus methylotrophicus DC3, isolated from the soil of Korean ginseng, a traditionally known oriental medicinal plant in Korea. The AgNPs showed maximum absorbance at 416 nm, when assayed by ultraviolet-visible spectroscopy (UV-vis). The field emission transmission electron micrograph (FE-TEM) results showed that the particles were spherical and 10–30 nm in size. In addition, the product was also characterized by energy dispersive X-ray spectroscopy (EDX), which displayed a 3 keV peak corresponding to the silver nanocrystal. Elemental mapping results also confirmed the presence of silver elements in the electron micrograph region. Furthermore, the AgNPs demonstrated antimicrobial activity against various pathogenic microorganisms such as Candida albicans, Salmonella enterica, Escherichia coli, and Vibrio parahaemolyticus, with enhanced antimicrobial activity being exhibited against C. albicans. Therefore, the current study describes the simple, efficient, and green method of synthesis of AgNPs by B. methylotrophicus DC3.


Journal of Nanomaterials | 2015

Biosynthesis of anisotropic silver nanoparticles by bhargavaea indica and their synergistic effect with antibiotics against pathogenic microorganisms

Priyanka Singh; Yeon Ju Kim; Hina Singh; Ramya Mathiyalagan; Chao Wang; Deok Chun Yang

The strain Bhargavaea indica DC1 isolated from four-year-old P. ginseng rhizospheric soil was used to perform rapid and extracellular biosynthesis of anisotropic silver nanoparticles. The ultraviolet-visible (UV-vis) spectra of the reaction mixture containing silver nanoparticles showed a peak at 460 nm, corresponding to the surface plasmon absorbance of silver nanoparticles. Field-emission transmission electron microscopy (FE-TEM) structural characterization revealed the nanobar, pentagon, spherical, icosahedron, hexagonal, truncated triangle, and triangular nanoparticles, with the size range from 30 to 100 nm. The energy-dispersive X-ray (EDX) analysis and elemental mapping results also confirmed that the silver was the predominant component of isolated nanoparticles. The X-ray diffraction (XRD) results correspond to the purity of silver nanoparticles and dynamic light scattering (DLS) result indicated that the average diameter of particles was 111.6 nm. In addition, enhancement in antimicrobial activity of commercial antibiotics was observed against various pathogenic microorganisms such as Vibrio parahaemolyticus, Salmonella enterica, Staphylococcus aureus, Bacillus anthracis, Bacillus cereus, Escherichia coli, and Candida albicans.


Carbohydrate Polymers | 2014

Ginsenoside compound K-bearing glycol chitosan conjugates: Synthesis, physicochemical characterization, and in vitro biological studies

Ramya Mathiyalagan; Sathiyamoorthy Subramaniyam; Yeon Ju Kim; Youn-Chul Kim; Deok Chun Yang

Ginsenosides are triterpenoids found in Panax ginseng and have a numerous structural, functional, and pharmacological properties. The purpose of this study was to develop hydrophilic polymer functionalized ginsenoside conjugates to enhance water solubility and targeted delivery. To this end, hydrophobic ginsenoside compound K (CK) was covalently conjugated to the backbone of hydrophilic glycol chitosan (GC) through an acid-labile linkage. The resulting GC-CK conjugates formed self-assembled spherical nanoparticles in an aqueous solution, and their particles sizes were (296 nm and 255 nm) dependent on the degree of CK substitution. The nanoparticles were stable in the physiological buffer (pH 7.4) over a period of 8 days, whereas they were readily degraded under acidic conditions (pH 5.0) mimicking the intracellular pH-conditions. From in vitro release experiment, it was found that CK released slowly from the self-assembled nanoparticles in the physiological buffer (pH 7.4). On the other hand, the release rate of CK was rapidly increased under the acidic condition (pH 5.0). In vitro cytotoxicity assays revealed that GC-CK conjugates exhibited higher cytotoxicity than CK in HT29, and similar cytotoxicity in HepG2, and HT22 cell lines. Moreover, RAW264.7 cells treated with GC-CK maintained good cell viability and exhibited decreased lipopolysaccharide-induced NO production. Taken together, these results suggest that the GC-CK conjugate may be potentially useful as a tumor-specific delivery vehicle.


Biomedicine & Pharmacotherapy | 2016

Anticancer activity of silver nanoparticles from Panax ginseng fresh leaves in human cancer cells.

Verónica Castro-Aceituno; Sungeun Ahn; Shakina Yesmin Simu; Priyanka Singh; Ramya Mathiyalagan; Hyun A. Lee; Deok Chun Yang

The pharmaceutical role of silver nanoparticles has been increased over the last decades, especially those synthesized through herbal medicinal plants, due to their variety of pharmacological importance. Panax ginseng Meyer (P. ginseng) has been widely used as a therapeutic herbal medicine for a long time in cancer treatment. In this study, the cytotoxic and oxidative effect of a novel silver nanoparticles synthesized from P. ginseng fresh leaves (P.g AgNPs) were evaluated in different human cancer cell lines. In addition, the effect of P.g AgNPs on cell migration, apoptosis and the determination of the mechanism involve was determinate by the use of A549 lung cancer cell line. It was found that P.g AgNPs treatment inhibited cell viability and induced oxidative stress in A549, MCF7 and HepG2 cancer cell lines. Likewise, P.g AgNPs treatment inhibited the epidermal growth factor (EGF)-enhanced migration, as well as decreased the mRNA levels and phosphorylation of EGF receptors in A549 cells. Moreover, P.g AgNPs modified the morphology of the cell nucleus and increase apoptosis percentage; this effect was linked to the stimulation of p38 MAPK/p53 pathway. Taken together, our results showed that P.g AgNPs exhibited anti-cancer activity in A549 and the regulation of EGFR/p38 MAPK/p53 pathway might be the possible mechanism of its anti-activity. Further experiments are suggested to determinate the mechanism by which P.g AgNPs induce cytotoxicity and ROS generation in MCF-7 and HepG2 cells.


Gene | 2014

Transcript expression profiling for adventitious roots of Panax ginseng Meyer

Sathiyamoorthy Subramaniyam; Ramya Mathiyalagan; Sathishkumar Natarajan; Yu-Jin Kim; Moon-Gi Jang; Jun-Hyung Park; Deok Chun Yang

Panax ginseng Meyer is one of the major medicinal plants in oriental countries belonging to the Araliaceae family which are the primary source for ginsenosides. However, very few genes were characterized for ginsenoside pathway, due to the limited genome information. Through this study, we obtained a comprehensive transcriptome from adventitious roots, which were treated with methyl jasmonic acids for different time points (control, 2h, 6h, 12h, and 24h) and sequenced by RNA 454 pyrosequencing technology. Reference transcriptome 39,304,529 (0.04GB) was obtained from 5,724,987,880 bases (5.7GB) of 22 libraries by de novo assembly and 35,266 (58.5%) transcripts were annotated with biological schemas (GO and KEGG). The digital gene expression patterns were obtained from in vitro grown adventitious root sequences which mapped to reference, from that, 3813 (6.3%) unique transcripts were involved in ≥2 fold up and downregulations. Finally, candidates for ginsenoside pathway genes were predicted from observed expression patterns. Among them, 30 transcription factors, 20 cytochromes, and 11 glycosyl transferases were predicted as ginsenoside candidates. These data can remarkably expand the existing transcriptome resources of Panax, especially to predict existence of gene networks in P. ginseng. The entity of the data provides a valuable platform to reveal more on secondary metabolism and abiotic stresses from P. ginseng in vitro grown adventitious roots.


Journal of Ginseng Research | 2013

Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer)

Ramya Mathiyalagan; Sathiyamoorthy Subramaniyam; Sathishkumar Natarajan; Yeon Ju Kim; Myung Suk Sun; Se-Young Kim; Yu-Jin Kim; Deok Chun Yang

MicroRNAs (miRNAs) are a class of recently discovered non-coding small RNA molecules, on average approximately 21 nucleotides in length, which underlie numerous important biological roles in gene regulation in various organisms. The miRNA database (release 18) has 18,226 miRNAs, which have been deposited from different species. Although miRNAs have been identified and validated in many plant species, no studies have been reported on discovering miRNAs in Panax ginseng Meyer, which is a traditionally known medicinal plant in oriental medicine, also known as Korean ginseng. It has triterpene ginseng saponins called ginsenosides, which are responsible for its various pharmacological activities. Predicting conserved miRNAs by homology-based analysis with available expressed sequence tag (EST) sequences can be powerful, if the species lacks whole genome sequence information. In this study by using the EST based computational approach, 69 conserved miRNAs belonging to 44 miRNA families were identified in Korean ginseng. The digital gene expression patterns of predicted conserved miRNAs were analyzed by deep sequencing using small RNA sequences of flower buds, leaves, and lateral roots. We have found that many of the identified miRNAs showed tissue specific expressions. Using the insilico method, 346 potential targets were identified for the predicted 69 conserved miRNAs by searching the ginseng EST database, and the predicted targets were mainly involved in secondary metabolic processes, responses to biotic and abiotic stress, and transcription regulator activities, as well as a variety of other metabolic processes.


International Journal of Nanomedicine | 2016

Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities

Chao Wang; Ramya Mathiyalagan; Y. J. Kim; Castro-Aceituno; Priyanka Singh; Sungeun Ahn; Dandan Wang; Deok Chun Yang

Dendropanax morbifera Léveille is an oriental medicinal plant that is traditionally used in folk medicine and grows in a specific region of South Korea. We aimed to enhance the utilization of D. morbifera medicinal plants for synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs). D. morbifera leaf extract acted as both a reducing and a stabilizing agent that rapidly synthesized Dendropanax AgNPs (D-AgNPs) and Dendropanax AuNPs (D-AuNPs). The D-AgNPs and D-AuNPs were characterized by ultraviolet-visible spectroscopy, energy dispersive X-ray analysis, elemental mapping, field emission transmission electron microscopy, X-ray diffraction, and dynamic light scattering. The characterizations revealed that the D-AgNPs and D-AuNPs were in polygon and hexagon shapes with average sizes of 100–150 nm and 10–20 nm, respectively. The important outcomes were the synthesis of AgNPs and AuNPs within 1 hour and 3 minutes, respectively, avoiding the subsequent processing for removal of any toxic components or for stabilizing the nanoparticles. Additionally, D-AgNPs and D-AuNPs were examined for cytotoxicity in a human keratinocyte cell line and in A549 human lung cancer cell line. The results indicated that D-AgNPs exhibited less cytotoxicity in the human keratinocyte cell line at 100 µg/mL after 48 hours. On the other hand, D-AgNPs showed potent cytotoxicity in the lung cancer cells at the same concentration after 48 hours, whereas D-AuNPs did not exhibit cytotoxicity in both cell lines at the same concentration. However, both D-AgNPs and D-AuNPs at 50 µg/mL enhanced the cytotoxicity of ginsenoside compound K at 25 µM after 48 hours of treatment compared with CK alone. We believe that this rapid green synthesis of D-AgNPs and D-AuNPs is a valuable addition to the applications of D. morbifera medicinal plant. D-AuNPs can be used as carriers for drug delivery and in cancer therapy due to their lack of normal cell cytotoxicity.

Collaboration


Dive into the Ramya Mathiyalagan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chao Wang

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge