Rana Munns
University of Western Australia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rana Munns.
Annual Review of Plant Biology | 2008
Rana Munns; Mark Tester
The physiological and molecular mechanisms of tolerance to osmotic and ionic components of salinity stress are reviewed at the cellular, organ, and whole-plant level. Plant growth responds to salinity in two phases: a rapid, osmotic phase that inhibits growth of young leaves, and a slower, ionic phase that accelerates senescence of mature leaves. Plant adaptations to salinity are of three distinct types: osmotic stress tolerance, Na(+) or Cl() exclusion, and the tolerance of tissue to accumulated Na(+) or Cl(). Our understanding of the role of the HKT gene family in Na(+) exclusion from leaves is increasing, as is the understanding of the molecular bases for many other transport processes at the cellular level. However, we have a limited molecular understanding of the overall control of Na(+) accumulation and of osmotic stress tolerance at the whole-plant level. Molecular genetics and functional genomics provide a new opportunity to synthesize molecular and physiological knowledge to improve the salinity tolerance of plants relevant to food production and environmental sustainability.
Australian Journal of Plant Physiology | 1986
Rana Munns; Annie Termaat
This paper discusses whole-plant responses to salinity in order to answer the question of what process limits growth of non-halophytes in saline soils. Leaf growth is more sensitive to salinity than root growth, so we focus on the process or processes that might limit leaf expansion. Effects of short-term exposure (days) are considered separately from long-term exposure (weeks to years). The answer in the short term is probably the water status of the root and we suggest that a message from the root is regulating leaf expansion. The answer to what limits growth in the long term may be the maximum salt concentration tolerated by the fully expanded leaves of the shoot; if the rate of leaf death approaches the rate of new leaf expansion, the photosynthetic area will eventually become too low to support continued growth.
Plant and Soil | 2003
Rana Munns; Richard A. James
Fast and effective glasshouse screening techniques that could identify genetic variation in salinity tolerance were tested. The objective was to produce screening techniques for selecting salt-tolerant progeny in breeding programs in which genes for salinity tolerance have been introduced by either conventional breeding or genetic engineering. A set of previously unexplored tetraploid wheat genotypes, from five subspecies of Triticum turgidum, were used in a case study for developing and validating glasshouse screening techniques for selecting for physiologically based traits that confer salinity tolerance. Salinity tolerance was defined as genotypic differences in biomass production in saline versus non-saline conditions over prolonged periods, of 3–4 weeks. Short-term experiments (1 week) measuring either biomass or leaf elongation rates revealed large decreases in growth rate due to the osmotic effect of the salt, but little genotypic differences, although there were genotypic differences in long-term experiments. Specific traits were assessed. Na+ exclusion correlated well with salinity tolerance in the durum subspecies, and K+/Na+ discrimination correlated to a lesser degree. Both traits were environmentally robust, being independent of root temperature and factors that might influence transpiration rates such as light level. In the other four T. turgidum subspecies there was no correlation between salinity tolerance and Na+ accumulation or K+/Na+ discrimination, so other traits were examined. The trait of tolerance of high internal Na+ was assessed indirectly, by measuring chlorophyll retention. Five landraces were selected as maintaining green healthy leaves despite high levels of Na+ accumulation. Factors affecting field performance of genotypes selected by trait-based techniques are discussed.
Australian Journal of Plant Physiology | 1986
Thomas Gollan; John B. Passioura; Rana Munns
Wheat and sunflower were grown in pots that could be enclosed in a pressure chamber, with the shoot in a cuvette. Applying an appropriate pneumatic pressure to the roots enabled the leaves to be kept fully turgid despite any drying of the soil. The leaf conductance of plants was followed while the soil dried. Remarkably, this conductance fell with falling soil water content no matter whether the leaves were kept fully turgid or not. It is concluded that the roots sensed the drying of the soil and sent a message to the leaves which induced stomatal closure.
Plant and Soil | 2002
Rana Munns; Shazia Husain; Anna Rita Rivelli; Richard A. James; Anthony G. Condon; Megan P. Lindsay; Evans S. Lagudah; Daniel P. Schachtman; Ray A. Hare
Increased salt tolerance is needed for crops grown in areas at risk of salinisation. This requires new genetic sources of salt tolerance, and more efficient techniques for identifying salt-tolerant germplasm, so that new genes for tolerance can be introduced into crop cultivars. Screening a large number of genotypes for salt tolerance is not easy. Salt tolerance is achieved through the control of salt movement into and through the plant, and salt-specific effects on growth are seen only after long periods of time. Early effects on growth and metabolism are likely due to osmotic effects of the salt, that is to the salt in the soil solution. To avoid the necessity of growing plants for long periods of time to measure biomass or yield, practical selection techniques can be based on physiological traits. We illustrate this with current work on durum wheat, on selection for the trait of sodium exclusion. We have explored a wide range of genetic diversity, identified a new source of sodium exclusion, confirmed that the trait has a high heritability, checked for possible penalties associated with the trait, and are currently developing molecular markers. This illustrates the potential for marker-assisted selection based on sound physiological principles in producing salt-tolerant crop cultivars.
Nature Biotechnology | 2012
Rana Munns; Richard A. James; Bo Xu; Asmini Athman; Simon J. Conn; Charlotte Jordans; Caitlin S. Byrt; Ray A. Hare; Stephen D. Tyerman; Mark Tester; Darren Plett; Matthew Gilliham
The ability of wheat to maintain a low sodium concentration ([Na+]) in leaves correlates with improved growth under saline conditions. This trait, termed Na+ exclusion, contributes to the greater salt tolerance of bread wheat relative to durum wheat. To improve the salt tolerance of durum wheat, we explored natural diversity in shoot Na+ exclusion within ancestral wheat germplasm. Previously, we showed that crossing of Nax2, a gene locus in the wheat relative Triticum monococcum into a commercial durum wheat (Triticum turgidum ssp. durum var. Tamaroi) reduced its leaf [Na+] (ref. 5). Here we show that a gene in the Nax2 locus, TmHKT1;5-A, encodes a Na+-selective transporter located on the plasma membrane of root cells surrounding xylem vessels, which is therefore ideally localized to withdraw Na+ from the xylem and reduce transport of Na+ to leaves. Field trials on saline soils demonstrate that the presence of TmHKT1;5-A significantly reduces leaf [Na+] and increases durum wheat grain yield by 25% compared to near-isogenic lines without the Nax2 locus.
Plant Physiology | 2005
Romola J. Davenport; Richard A. James; Mark Tester; Rana Munns
In many species, salt sensitivity is associated with the accumulation of sodium (Na+) in photosynthetic tissues. Na+ uptake to leaves involves a series of transport steps and so far very few candidate genes have been implicated in the control of these processes. In this study, Na+ transport was compared in two varieties of durum wheat (Triticum turgidum) L. subsp. durum known to differ in salt tolerance and Na+ accumulation; the relatively salt tolerant landrace line 149 and the salt sensitive cultivar Tamaroi. Genetic studies indicated that these genotypes differed at two major loci controlling leaf blade Na+ accumulation (R. Munns, G.J. Rebetzke, S. Husain, R.A. James, R.A. Hare [2003] Aust J Agric Res 54: 627–635). The physiological traits determined by these genetic differences were investigated using measurements of unidirectional 22Na+ transport and net Na+ accumulation. The major differences in Na+ transport between the genotypes were (1) the rate of transfer from the root to the shoot (xylem loading), which was much lower in the salt tolerant genotype, and (2) the capacity of the leaf sheath to extract and sequester Na+ as it entered the leaf. The genotypes did not differ significantly in unidirectional root uptake of Na+ and there was no evidence for recirculation of Na+ from shoots to roots. It is likely that xylem loading and leaf sheath sequestration are separate genetic traits that interact to control leaf blade Na+.
Crop & Pasture Science | 1999
Rana Munns; Ray A. Hare; Richard A. James; G. J. Rebetzke
Durum wheat (AB genomes) is more salt-sensitive than bread wheat (ABD genomes), a feature that restricts its expansion into areas with sodic or saline soils. Salt tolerance in bread wheat is linked with a locus on the D genome that results in low Na+ uptake and enhanced K+/Na+ discrimination. In order to introduce salt tolerance into current durum wheats from sources other than the D genome, a search for genetic variation in salt tolerance was made across a wide range of tetraploids representing 5 Triticum turgidum sub-species (durum, carthlicum, turgidum, turanicum, polonicum). Selections were screened for low Na+ uptake and enhanced K+/Na+ discrimination. This was assessed in seedlings grown in 150 mМ NaCl with supplemental Ca2+, by measuring the Na+ and K+ accumulated in the blade of a given leaf over 10 days. Large and repeatable genetic variation was found. Low Na+ accumulation and high K+/Na+ discrimination of similar magnitude to that of bread wheat was found in the sub-species durum. These selections have the potential for improving salt tolerance in durum wheat breeding programs.
Plant Physiology | 2006
Richard A. James; Romola J. Davenport; Rana Munns
Durum wheat (Triticum turgidum L. subsp. durum Desf.) Line 149 contains two novel major genes for excluding Na+ from leaf blades, named Nax1 and Nax2. The genes were separated into families containing a single gene and near-isogenic homozygous lines were selected. Lines containing either Nax1 or Nax2 had lower rates of Na+ transport from roots to shoots than their near-isogenic pairs due to lower rates of net loading of the xylem, not to lower rates of net uptake from the soil or higher rates of retranslocation in the phloem. Nax1 and Nax2 lines also had higher rates of K+ transport from root to shoot, resulting in an enhanced discrimination of K+ over Na+. Lines containing Nax1 differed from those containing Nax2 by unloading Na+ from the xylem as it entered the shoot so that Na+ was retained in the base of the leaf, leading to a high sheath to blade ratio of Na+ concentration. Gradients in tissue concentrations of Na+ along the leaf suggested that Na+ was continually removed from the xylem. The Nax2 line did not retain Na+ in the base of the leaf, suggesting that it functioned only in the root. The Nax2 gene therefore has a similar function to Kna1 in bread wheat (Triticum aestivum).
Australian Journal of Experimental Agriculture | 2005
Timothy D. Colmer; Rana Munns; T. J. Flowers
Cropping on saline land is restricted by the low tolerance of crops to salinity and waterlogging. Prospects for improving salt tolerance in wheat and barley include the use of: (i) intra-specific variation, (ii) variation for salt tolerance in the progenitors of these cereals, (iii) wide-hybridisation with halophytic ‘wild’ relatives (an option for wheat, but not barley), and (iv) transgenic techniques. In this review, key traits contributing to salt tolerance, and sources of variation for these within the Triticeae, are identified and recommendations for use of these traits in screening for salt tolerance are summarised. The potential of the approaches to deliver substantial improvements in salt tolerance is discussed, and the importance of adverse interactions between waterlogging and salinity are emphasised. The potential to develop new crops from the diverse halophytic flora is also considered.
Collaboration
Dive into the Rana Munns's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs