Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rana Sayeed is active.

Publication


Featured researches published by Rana Sayeed.


Circulation | 2013

Interactions Between Vascular Wall and Perivascular Adipose Tissue Reveal Novel Roles for Adiponectin in the Regulation of Endothelial Nitric Oxide Synthase Function in Human Vessels

Marios Margaritis; Alexios S. Antonopoulos; Janet E. Digby; Regent Lee; Svetlana Reilly; P Coutinho; C Shirodaria; Rana Sayeed; Mario Petrou; R De Silva; Shapour Jalilzadeh; M Demosthenous; C Bakogiannis; Dimitris Tousoulis; Christodoulos Stefanadis; Robin P. Choudhury; Barbara Casadei; Keith M. Channon; Charalambos Antoniades

Background— Adiponectin is an adipokine with potentially important roles in human cardiovascular disease states. We studied the role of adiponectin in the cross-talk between adipose tissue and vascular redox state in patients with atherosclerosis. Methods and Results— The study included 677 patients undergoing coronary artery bypass graft surgery. Endothelial function was evaluated by flow-mediated dilation of the brachial artery in vivo and by vasomotor studies in saphenous vein segments ex vivo. Vascular superoxide (O2−) and endothelial nitric oxide synthase (eNOS) uncoupling were quantified in saphenous vein and internal mammary artery segments. Local adiponectin gene expression and ex vivo release were quantified in perivascular (saphenous vein and internal mammary artery) subcutaneous and mesothoracic adipose tissue from 248 patients. Circulating adiponectin was independently associated with nitric oxide bioavailability and O2− production/eNOS uncoupling in both arteries and veins. These findings were supported by a similar association between functional polymorphisms in the adiponectin gene and vascular redox state. In contrast, local adiponectin gene expression/release in perivascular adipose tissue was positively correlated with O2− and eNOS uncoupling in the underlying vessels. In ex vivo experiments with human saphenous veins and internal mammary arteries, adiponectin induced Akt-mediated eNOS phosphorylation and increased tetrahydrobiopterin bioavailability, improving eNOS coupling. In ex vivo experiments with human saphenous veins/internal mammary arteries and adipose tissue, we demonstrated that peroxidation products produced in the vascular wall (ie, 4-hydroxynonenal) upregulate adiponectin gene expression in perivascular adipose tissue via a peroxisome proliferator-activated receptor-&ggr;–dependent mechanism. Conclusions— We demonstrate for the first time that adiponectin improves the redox state in human vessels by restoring eNOS coupling, and we identify a novel role of vascular oxidative stress in the regulation of adiponectin expression in human perivascular adipose tissue.


Circulation | 2012

Systemic and Vascular Oxidation Limits the Efficacy of Oral Tetrahydrobiopterin Treatment in Patients With Coronary Artery Disease

Colin Cunnington; T Van Assche; C Shirodaria; I Kylintireas; Alistair C. Lindsay; Justin Lee; Charalambos Antoniades; Marios Margaritis; Regent Lee; R Cerrato; Mark J. Crabtree; Jane M. Francis; Rana Sayeed; Chandi Ratnatunga; Ravi Pillai; Robin P. Choudhury; Stefan Neubauer; Keith M. Channon

Background— The endothelial nitric oxide synthase cofactor tetrahydrobiopterin (BH4) plays a pivotal role in maintaining endothelial function in experimental vascular disease models and in humans. Augmentation of endogenous BH4 levels by oral BH4 treatment has been proposed as a potential therapeutic strategy in vascular disease states. We sought to determine the mechanisms relating exogenous BH4 to human vascular function and to determine oral BH4 pharmacokinetics in both plasma and vascular tissue in patients with coronary artery disease. Methods and Results— Forty-nine patients with coronary artery disease were randomized to receive low-dose (400 mg/d) or high-dose (700 mg/d) BH4 or placebo for 2 to 6 weeks before coronary artery bypass surgery. Vascular function was quantified by magnetic resonance imaging before and after treatment, along with plasma BH4 levels. Vascular superoxide, endothelial function, and BH4 levels were determined in segments of saphenous vein and internal mammary artery. Oral BH4 treatment significantly augmented BH4 levels in plasma and in saphenous vein (but not internal mammary artery) but also increased levels of the oxidation product dihydrobiopterin (BH2), which lacks endothelial nitric oxide synthase cofactor activity. There was no effect of BH4 treatment on vascular function or superoxide production. Supplementation of human vessels and blood with BH4 ex vivo revealed rapid oxidation of BH4 to BH2 with predominant BH2 uptake by vascular tissue. Conclusions— Oral BH4 treatment augments total biopterin levels in patients with established coronary artery disease but has no net effect on vascular redox state or endothelial function owing to systemic and vascular oxidation of BH4. Alternative strategies are required to target BH4-dependent endothelial function in established vascular disease states. Clinical Trial Registration— URL: http://www.clinicaltrials.gov. Unique identifier: NCT00423280.


Diabetes | 2015

Adiponectin as a Link Between Type 2 Diabetes and Vascular NADPH Oxidase Activity in the Human Arterial Wall: The Regulatory Role of Perivascular Adipose Tissue

Alexios S. Antonopoulos; Marios Margaritis; P Coutinho; C Shirodaria; C Psarros; Laura Herdman; Fabio Sanna; R De Silva; Mario Petrou; Rana Sayeed; George Krasopoulos; Regent Lee; Janet E. Digby; Svetlana Reilly; C Bakogiannis; Dimitris Tousoulis; Benedikt M. Kessler; Barbara Casadei; Keith M. Channon; Charalambos Antoniades

Oxidative stress plays a critical role in the vascular complications of type 2 diabetes. We examined the effect of type 2 diabetes on NADPH oxidase in human vessels and explored the mechanisms of this interaction. Segments of internal mammary arteries (IMAs) with their perivascular adipose tissue (PVAT) and thoracic adipose tissue were obtained from 386 patients undergoing coronary bypass surgery (127 with type 2 diabetes). Type 2 diabetes was strongly correlated with hypoadiponectinemia and increased vascular NADPH oxidase–derived superoxide anions (O2˙−). The genetic variability of the ADIPOQ gene and circulating adiponectin (but not interleukin-6) were independent predictors of NADPH oxidase–derived O2˙−. However, adiponectin expression in PVAT was positively correlated with vascular NADPH oxidase–derived O2˙−. Recombinant adiponectin directly inhibited NADPH oxidase in human arteries ex vivo by preventing the activation/membrane translocation of Rac1 and downregulating p22phox through a phosphoinositide 3-kinase/Akt-mediated mechanism. In ex vivo coincubation models of IMA/PVAT, the activation of arterial NADPH oxidase triggered a peroxisome proliferator–activated receptor-γ–mediated upregulation of the adiponectin gene in the neighboring PVAT via the release of vascular oxidation products. We demonstrate for the first time in humans that reduced adiponectin levels in individuals with type 2 diabetes stimulates vascular NADPH oxidase, while PVAT “senses” the increased NADPH oxidase activity in the underlying vessel and responds by upregulating adiponectin gene expression. This PVAT-vessel interaction is identified as a novel therapeutic target for the prevention of vascular complications of type 2 diabetes.


Journal of the American College of Cardiology | 2012

Myocardial Redox State Predicts In-Hospital Clinical Outcome After Cardiac Surgery Effects of Short-Term Pre-Operative Statin Treatment

Charalambos Antoniades; Michael Demosthenous; Svetlana Reilly; Marios Margaritis; M H Zhang; Alexios S. Antonopoulos; Kyriakoula Marinou; Keshav Nahar; Raja Jayaram; Dimitris Tousoulis; Constantinos Bakogiannis; Rana Sayeed; Costas Triantafyllou; Nikolaos Koumallos; Costas Psarros; Antigoni Miliou; Christodoulos Stefanadis; Keith M. Channon; Barbara Casadei

OBJECTIVES The purpose of this study was to evaluate the role of the myocardial redox state in the development of in-hospital complications after cardiac surgery and the effect of statins on the myocardial redox state. BACKGROUND Statins improve clinical outcome after cardiac surgery, but it is unclear whether they exert their effects by modifying the myocardial redox state. METHODS We quantified myocardial superoxide anion (O(2)(-)) and peroxynitrite (ONOO(-)) and their enzymatic sources in samples of the right atrial appendage (RAA) from 303 patients undergoing cardiac surgery who were followed up until discharge, and in 42 patients who were randomized to receive 3-day treatment with atorvastatin 40 mg/d or placebo before surgery. The mechanisms by which atorvastatin modifies myocardial redox state were investigated in 26 RAA samples that were exposed to atorvastatin ex vivo. RESULTS Atrial O(2)(-) (derived mainly from nicotinamide adenine dinucleotide phosphate [NADPH] oxidases) and ONOO(-) were independently associated with increased risk of atrial fibrillation, the need for post-operative inotropic support, and the length of hospital stay. Pre-operative atorvastatin treatment suppressed atrial NADPH oxidase activity and myocardial O(2)(-) and ONOO(-) production. Ex vivo incubation of RAA samples with atorvastatin induced a mevalonate-reversible and Rac1-mediated inhibition of NADPH oxidase. CONCLUSIONS There is a strong independent association between myocardial O(2)(-)/ONOO(-) and in-hospital complications after cardiac surgery. Both myocardial O(2)(-) and ONOO(-) are reduced by pre-operative statin treatment, through a Rac1-mediated suppression of NADPH oxidase activity. These findings suggest that inhibition of myocardial NADPH oxidases may contribute to the beneficial effect of statins in patients undergoing cardiac surgery. (Effects of Atorvastatin on Endothelial Function, Vascular and Myocardial Redox State in High Cardiovascular Risk Patients; NCT01013103).


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Reciprocal Effects of Systemic Inflammation and Brain Natriuretic Peptide on Adiponectin Biosynthesis in Adipose Tissue of Patients With Ischemic Heart Disease

A S Antonopoulos; Marios Margaritis; P Coutinho; J Digby; R Patel; Constantinos Psarros; Ntobeko B. Ntusi; Theodoros D. Karamitsos; Regent Lee; R De Silva; Mario Petrou; Rana Sayeed; Michael Demosthenous; C Bakogiannis; Paul Wordsworth; Dimitris Tousoulis; S Neubauer; Keith M. Channon; Charalambos Antoniades

Objective— To explore the role of systemic inflammation in the regulation of adiponectin levels in patients with ischemic heart disease. Approach and Results— In a cross-sectional study of 575 subjects, serum adiponectin was compared between healthy subjects, patients with coronary artery disease with no/mild/severe heart failure (HF), and patients with nonischemic HF. Adiponectin expression and release from femoral, subcutaneous and thoracic adipose tissue was determined in 258 additional patients with coronary artery bypass grafting. Responsiveness of the various human adipose tissue depots to interleukin-6, tumor necrosis factor-&agr;, and brain natriuretic peptide (BNP) was examined by using ex vivo models of human fat. The effects of inducible low-grade inflammation were tested by using the model of Salmonella typhi vaccine-induced inflammation in healthy individuals. In the cross-sectional study, HF strikingly increased adiponectin levels. Plasma BNP was the strongest predictor of circulating adiponectin and its release from all adipose tissue depots in patients with coronary artery bypass grafting, even in the absence of HF. Femoral AT was the depot with the least macrophages infiltration and the largest adipocyte cell size and the only responsive to systemic and ex vivo proinflammatory stimulation (effect reversible by BNP). Low-grade inflammation reduced circulating adiponectin levels, while circulating BNP remained unchanged. Conclusions— This study demonstrates the regional variability in the responsiveness of human adipose tissue to systemic inflammation and suggests that BNP (not systemic inflammation) is the main driver of circulating adiponectin in patients with advanced atherosclerosis even in the absence of HF. Any interpretation of circulating adiponectin as a biomarker should take into account the underlying disease state, background inflammation, and BNP levels.


Circulation Research | 2016

Mutual Regulation of Epicardial Adipose Tissue and Myocardial Redox State by PPAR-γ/Adiponectin Signalling.

Alexios S. Antonopoulos; Marios Margaritis; Sander Verheule; Alice Recalde; Fabio Sanna; Laura Herdman; Costas Psarros; Hussein M. Nasrallah; P Coutinho; Ioannis Akoumianakis; Alison C. Brewer; Rana Sayeed; George Krasopoulos; Mario Petrou; Akansha Tarun; Dimitrios Tousoulis; Ajay M. Shah; Barbara Casadei; Keith M. Channon; Charalambos Antoniades

Supplemental Digital Content is available in the text.


Interactive Cardiovascular and Thoracic Surgery | 2012

What is the optimal timing for surgery in infective endocarditis with cerebrovascular complications

Michele Rossi; Alina Gallo; Ravi De Silva; Rana Sayeed

Neurologic dysfunction complicates the course of 10-40% of left-side infective endocarditis (IE). In right-sided IE, instead, when systemic emboli occur, paradoxical embolism should be considered. The spectrum of neurologic events includes embolic cerebrovascular complication (CVC), intracranial haemorrhage, ruptured mycotic aneurysm, transient ischaemic attack (TIA), meningitis, encephalopathy and brain abscess. Cardiopulmonary bypass might exacerbate neurological deficits due to: heparinization and secondary cerebral haemorrhage; hypotension and cerebral oedema in areas of the disrupted blood brain barrier. A best evidence topic was written according to a structured protocol. The question addressed was, whether there is an optimal timing for surgery in IE with CVCs. One hundred papers were found using the reported search criteria, and out of these 20 papers, provided the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results were tabulated. We found that evidence is conflicting because of lack of controlled studies. The optimal timing for the valve replacement depends on the type of neurological complication and the urgency of the operation. The new 2009 Guidelines on the prevention, diagnosis, and treatment of infective endocarditis (IE) recommend a multidisciplinary approach and to wait for 1-2 weeks of antibiotics treatment before performing cardiac surgery. However, early surgery is indicated in: heart failure (class 1 B), uncontrolled infection (class 1 B) and prevention of embolic events (class 1B/C). After a stroke, surgery should not be delayed as long as coma is absent and cerebral haemorrhage has been excluded by cranial CT (class IIa level B). After a TIA or a silent cerebral embolism, surgery is recommended without delay (class 1 level B). In intracranial haemorrhage (ICH), surgery must be postponed for at least 1 month (class 1 level C). Surgery for prosthetic valve endocarditis (PVE) follows the general principles outlined for native valve IE. Every patient should have a repeated head CT scan immediately before the operation to rule out a preoperative haemorrhagic transformation of a brain infarction. The presence of a haematoma warrants neurosurgical consultation and consideration of cerebral angiography to rule out a mycotic aneurysm.


Circulation-cardiovascular Imaging | 2013

Myocardial steatosis and left ventricular contractile dysfunction in patients with severe aortic stenosis.

Masliza Mahmod; Sacha Bull; Joseph Suttie; Nikhil Pal; Cameron Holloway; Sairia Dass; Saul G. Myerson; Jürgen E. Schneider; Ravi De Silva; Mario Petrou; Rana Sayeed; Stephen Westaby; Colin Clelland; Jane M. Francis; Houman Ashrafian; Theodoros D. Karamitsos; Stefan Neubauer

Background— Aortic stenosis (AS) leads to left ventricular (LV) hypertrophy and dysfunction. We hypothesized that cardiac steatosis is involved in the pathophysiology and also assessed whether it is reversible after aortic valve replacement. Methods and Results— Thirty-nine patients with severe AS (symptomatic=25, asymptomatic=14) with normal LV ejection fraction and no significant coronary artery disease and 20 age- and sex-matched healthy controls underwent cardiac 1H-magnetic resonance spectroscopy and imaging for the determination of steatosis (myocardial triglyceride content) and cardiac function, including circumferential strain (measured by magnetic resonance tagging). Strain was lower in both symptomatic and asymptomatic AS (−16.4±2.5% and −18.1±2.9%, respectively, versus controls −20.7±2.0%, both P<0.05). Myocardial steatosis was found in both symptomatic and asymptomatic patients with AS (0.89±0.42% in symptomatic AS; 0.75±0.36% in asymptomatic AS versus controls 0.45±0.17, both P<0.05). Importantly, multivariable analysis indicated that steatosis was an independent correlate of impaired LV strain. Spectroscopic measurements of myocardial triglyceride content correlated significantly with histological analysis of biopsies obtained during aortic valve replacement. At 8.0±2.1 months after aortic valve replacement, steatosis and strain had recovered toward normal. Conclusions— Pronounced myocardial steatosis is present in severe AS, regardless of symptoms, and is independently associated with the degree of LV strain impairment. Myocardial triglyceride content measured by magnetic resonance spectroscopy correlates with histological quantification. Steatosis and strain impairment are reversible after aortic valve replacement. Our findings suggest a novel pathophysiological mechanism in AS, myocardial steatosis, which may be amenable to treatment, thus potentially delaying onset of LV dysfunction.


Eurointervention | 2011

Myocardial injury following coronary artery surgery versus angioplasty (MICASA): a randomised trial using biochemical markers and cardiac magnetic resonance imaging.

van Gaal Wj; Arnold; Luca Testa; Theodoros D. Karamitsos; C.C.S. Lim; F. Ponnuthurai; Steffen E. Petersen; Jane M Francis; Joseph B. Selvanayagam; Rana Sayeed; N. West; Steve Westaby; S Neubauer; A P Banning

AIMS To compare the frequency and extent of Troponin I and late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) defined injury following PCI compared with CABG in patients with multivessel and/or left main coronary artery disease (CAD), and interpret these finding in light of the new ESC/ACCF/AHA/WHF Task Force definitions for necrosis and infarction. METHODS AND RESULTS Prospective, registered, single centre randomised controlled trial. Eighty patients with 3 vessel CAD (≥ 50% stenoses), or 2 vessel CAD including a type C lesion in the LAD, and/or left main disease were enrolled. Mean SYNTAX and EuroSCOREs were similar for both groups. Forty patients underwent PCI with drug eluting stents and 39 underwent CABG (one died prior to CABG). In the PCI group 6/38 (15.8%) patients had LGE, compared with 9/32 (28.1%) CABG patients (p = 0.25). Using the new Task Force definitions, necrosis occurred in 30/40 (75%) PCI patients and 35/35 (100%) CABG patients (p = 0.001), whilst infarction occurred in 30/40 (75%) PCI patients and 9/32 (28.1%) CABG patients (p = 0.0001). CONCLUSIONS Periprocedural necrosis according to the Task Force definition was significantly lower in the PCI group, and universal in the CABG group. The incidence and extent of CMR defined infarction following PCI did not differ compared with CABG. This demonstrates that PCI can achieve revascularisation in complex patients without increased procedural myocardial damage.


Journal of Cardiovascular Magnetic Resonance | 2014

Myocardial perfusion and oxygenation are impaired during stress in severe aortic stenosis and correlate with impaired energetics and subclinical left ventricular dysfunction.

Masliza Mahmod; Jane M Francis; Nikhil Pal; Andrew Lewis; Sairia Dass; Ravi De Silva; Mario Petrou; Rana Sayeed; Stephen Westaby; Matthew D. Robson; Houman Ashrafian; Stefan Neubauer; Theodoros D. Karamitsos

BackgroundLeft ventricular (LV) hypertrophy in aortic stenosis (AS) is characterized by reduced myocardial perfusion reserve due to coronary microvascular dysfunction. However, whether this hypoperfusion leads to tissue deoxygenation is unknown. We aimed to assess myocardial oxygenation in severe AS without obstructive coronary artery disease, and to investigate its association with myocardial energetics and function.MethodsTwenty-eight patients with isolated severe AS and 15 controls underwent cardiovascular magnetic resonance (CMR) for assessment of perfusion (myocardial perfusion reserve index-MPRI) and oxygenation (blood-oxygen level dependent-BOLD signal intensity-SI change) during adenosine stress. LV circumferential strain and phosphocreatine/adenosine triphosphate (PCr/ATP) ratios were assessed using tagging CMR and 31P MR spectroscopy, respectively.ResultsAS patients had reduced MPRI (1.1 ± 0.3 vs. controls 1.7 ± 0.3, p < 0.001) and BOLD SI change during stress (5.1 ± 8.9% vs. controls 18.2 ± 10.1%, p = 0.001), as well as reduced PCr/ATP (1.45 ± 0.21 vs. 2.00 ± 0.25, p < 0.001) and LV strain (−16.4 ± 2.7% vs. controls −21.3 ± 1.9%, p < 0.001). Both perfusion reserve and oxygenation showed positive correlations with energetics and LV strain. Furthermore, impaired energetics correlated with reduced strain. Eight months post aortic valve replacement (AVR) (n = 14), perfusion (MPRI 1.6 ± 0.5), oxygenation (BOLD SI change 15.6 ± 7.0%), energetics (PCr/ATP 1.86 ± 0.48) and circumferential strain (−19.4 ± 2.5%) improved significantly.ConclusionsSevere AS is characterized by impaired perfusion reserve and oxygenation which are related to the degree of derangement in energetics and associated LV dysfunction. These changes are reversible on relief of pressure overload and hypertrophy regression. Strategies aimed at improving oxygen demand–supply balance to preserve myocardial energetics and LV function are promising future therapies.

Collaboration


Dive into the Rana Sayeed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario Petrou

John Radcliffe Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexios S. Antonopoulos

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge