Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Randa Kasmieh is active.

Publication


Featured researches published by Randa Kasmieh.


Cancer Research | 2007

MicroRNA-21 Knockdown Disrupts Glioma Growth In vivo and Displays Synergistic Cytotoxicity with Neural Precursor Cell–Delivered S-TRAIL in Human Gliomas

Maarten F. Corsten; Rafael Miranda; Randa Kasmieh; Anna M. Krichevsky; Ralph Weissleder; Khalid Shah

Despite the development of new glioma therapies that allow for tumor-targeted in situ delivery of cytotoxic drugs, tumor resistance to apoptosis remains a key impediment to effective treatment. Mounting evidence indicates that microRNAs (miRNA) might play a fundamental role in tumorigenesis, controlling cell proliferation and apoptosis. In gliomas, microRNA-21 (miR-21) levels have been reported to be elevated and their knockdown is associated with increased apoptotic activity. We hypothesized that suppression of miR-21 might sensitize gliomas for cytotoxic tumor therapy. With the use of locked nucleic acid (LNA)-antimiR-21 oligonucleotides, bimodal imaging vectors, and neural precursor cells (NPC) expressing a secretable variant of the cytotoxic agent tumor necrosis factor-related apoptosis inducing ligand (S-TRAIL), we show that the combined suppression of miR-21 and NPC-S-TRAIL leads to a synergistic increase in caspase activity and significantly decreased cell viability in human glioma cells in vitro. This phenomenon persists in vivo, as we observed complete eradication of LNA-antimiR-21-treated gliomas subjected to the presence of NPC-S-TRAIL in the murine brain. Our results reveal the efficacy of miR-21 antagonism in murine glioma models and implicate miR-21 as a target for therapeutic intervention. Furthermore, our findings provide the basis for developing combination therapies using miRNA modulation and cytotoxic tumor therapies.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy

Laura S. Sasportas; Randa Kasmieh; Hiroaki Wakimoto; Shawn D. Hingtgen; Jeroen A. J. M. van de Water; Gayatry Mohapatra; Jose-Luiz Figueiredo; Robert L. Martuza; Ralph Weissleder; Khalid Shah

The poor prognosis of patients with aggressive and invasive cancers combined with toxic effects and short half-life of currently available treatments necessitate development of more effective tumor selective therapies. Mesenchymal stem cells (MSCs) are emerging as novel cell-based delivery agents; however, a thorough investigation addressing their therapeutic potential and fate in different cancer models is lacking. In this study, we explored the engineering potential, fate, and therapeutic efficacy of human MSCs in a highly malignant and invasive model of glioblastoma. We show that engineered MSC retain their “stem-like” properties, survive longer in mice with gliomas than in the normal brain, and migrate extensively toward gliomas. We also show that MSCs are resistant to the cytokine tumor necrosis factor apoptosis ligand (TRAIL) and, when engineered to express secreted recombinant TRAIL, induce caspase-mediated apoptosis in established glioma cell lines as well as CD133-positive primary glioma cells in vitro. Using highly malignant and invasive human glioma models and employing real-time imaging with correlative neuropathology, we demonstrate that MSC-delivered recombinant TRAIL has profound anti-tumor effects in vivo. This study demonstrates the efficacy of diagnostic and therapeutic MSC in preclinical glioma models and forms the basis for developing stem cell-based therapies for different cancers.


Journal of Biomedical Optics | 2008

Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications

Nikolaos C. Deliolanis; Randa Kasmieh; Thomas Wurdinger; Bakhos A. Tannous; Khalid Shah; Vasilis Ntziachristos

The discovery of new fluorescent proteins (FPs) that emit in the far-red part of the spectrum, where light absorption from tissue is significantly lower than in the visible, offers the possibility for noninvasive biological interrogation at the entire organ or small animal level in vivo. The performance of FPs in deep-tissue imaging depends not only on their optical characteristics, but also on the wavelength-dependent tissue absorption and the depth of the fluorescence activity. To determine the optimal choice of FP and illumination wavelength, we compared the performance of five of the most promising FPs: tdTomato, mCherry, mRaspberry, mPlum, and Katushka. We experimentally measured the signal strength through mice and employed theoretical predictions to obtain an understanding of the performance of different illumination scenarios, especially as they pertain to tomographic imaging. It was found that the appropriate combination of red-shifted proteins and illumination wavelengths can improve detection sensitivity in small animals by at least two orders of magnitude compared with green FP. It is also shown that the steep attenuation change of the hemoglobin spectrum around the 600-nm range may significantly affect the detection sensitivity and, therefore, necessitates the careful selection of illumination wavelengths for optimal imaging performance.


The Journal of Neuroscience | 2008

Bimodal Viral Vectors and In Vivo Imaging Reveal the Fate of Human Neural Stem Cells in Experimental Glioma Model

Khalid Shah; Shawn D. Hingtgen; Randa Kasmieh; Jose-Luiz Figueiredo; Elisa García-García; Alberto Martínez-Serrano; Xandra O. Breakefield; Ralph Weissleder

Transplantation of genetically engineered cells into the CNS offers immense potential for the treatment of several neurological disorders. Monitoring expression levels of transgenes and following changes in cell function and distribution over time is critical in assessing therapeutic efficacy of such cells in vivo. We have engineered lentiviral vectors bearing fusions between different combinations of fluorescent and bioluminescent marker proteins and used bioluminescence imaging and intravital-scanning microscopy in real time to study the fate of human neural stem cells (hNSCs) at a cellular resolution in glioma-bearing brains in vivo. Using Renilla luciferase (Rluc)-DsRed2 or GFP-Rluc-expressing malignant human glioma model, transduced hNSCs were shown to migrate extensively toward gliomas, with hNSCs populating gliomas at 10 d after transplantation. Furthermore, transduced hNSCs survived longer in mice with gliomas than in normal brain, but did not modulate glioma progression in vivo. These studies demonstrate the utility of bimodal viral vectors and real-time imaging in evaluating fate of NSCs in diseased models and thus provide a platform for accelerating cell-based therapies for CNS disorders.


Oncogene | 2010

Human stem cells expressing novel TSP-1 variant have anti-angiogenic effect on brain tumors.

M. Van Eekelen; L. S. Sasportas; Randa Kasmieh; Stephen Yip; Joseluis Figueiredo; David N. Louis; Ralph Weissleder; Khalid Shah

Novel therapeutic agents combined with innovative modes of delivery and non-invasive imaging of drug delivery, pharmacokinetics and efficacy are crucial in developing effective clinical anticancer therapies. In this study, we have created and characterized multiple novel variants of anti-angiogenic protein thrombospondin (aaTSP-1) that comprises unique regions of three type-I-repeats of TSP-1 and used engineered human neural stem cells (hNSC) to provide sustained on-site delivery of secretable aaTSP-1 to tumor-vasculature. We show that hNSC-aaTSP-1 has anti-angiogenic effect on human brain and dermal microvascular endothelial cells co-cultured with established glioma cells and CD133+ glioma-initiating cells. Using human glioma cells and hNSC engineered with different combinations of fluorescent and bioluminescent marker proteins and employing multi-modality imaging techniques, we show that aaTSP-1 targets the vascular-component of gliomas and a single administration of hNSC-aaTSP-1 markedly reduces tumor vessel-density that results in inhibition of tumor-progression and increased survival in mice bearing highly malignant human gliomas. We also show that therapeutic hNSC do not proliferate and remain in an un-differentiated state in the brains of glioma-bearing mice. This study provides a platform for accelerated development of future cell-based therapies for cancer.


Stem Cells | 2010

A novel molecule integrating therapeutic and diagnostic activities reveals multiple aspects of stem cell-based therapy

Shawn D. Hingtgen; Randa Kasmieh; Jeroen A. J. M. van de Water; Ralph Weissleder; Khalid Shah

Stem cells are promising therapeutic delivery vehicles; however pre‐clinical and clinical applications of stem cell‐based therapy would benefit significantly from the ability to simultaneously determine therapeutic efficacy and pharmacokinetics of therapies delivered by engineered stem cells. In this study, we engineered and screened numerous fusion variants that contained therapeutic (TRAIL) and diagnostic (luciferase) domains designed to allow simultaneous investigation of multiple events in stem cell‐based therapy in vivo. When various stem cell lines were engineered with the optimized molecule, SRLOL2TR, diagnostic imaging showed marked differences in the levels and duration of secretion between stem cell lines, while the therapeutic activity of the molecule showed the different secretion levels translated to significant variability in tumor cell killing. In vivo, simultaneous diagnostic and therapeutic monitoring revealed that stem cell‐based delivery significantly improved pharmacokinetics and anti‐tumor effectiveness of the therapy compared to intravenous or intratumoral delivery. As treatment for highly malignant brain tumor xenografts, tracking SRLOL2TR showed stable stem cell‐mediated delivery significantly regressed peripheral and intracranial tumors. Together, the integrated diagnostic and therapeutic properties of SRLOL2TR answer critical questions necessary for successful utilization of stem cells as novel therapeutic vehicles. STEM CELLS:2010;28:832–841


Proceedings of the National Academy of Sciences of the United States of America | 2012

Therapeutic stem cells expressing variants of EGFR-specific nanobodies have antitumor effects

Jeroen A. J. M. van de Water; Tugba Bagci-Onder; Aayush S. Agarwal; Hiroaki Wakimoto; Rob C. Roovers; Yanni Zhu; Randa Kasmieh; Deepak Bhere; Paul M.P. van Bergen en Henegouwen; Khalid Shah

The deregulation of the epidermal growth factor receptor (EGFR) has a significant role in the progression of tumors. Despite the development of a number of EGFR-targeting agents that can arrest tumor growth, their success in the clinic is limited in several tumor types, particularly in the highly malignant glioblastoma multiforme (GBM). In this study, we generated and characterized EGFR-specific nanobodies (ENb) and imageable and proapoptotic ENb immunoconjugates released from stem cells (SC) to ultimately develop a unique EGFR-targeted therapy for GBM. We show that ENbs released from SCs specifically localize to tumors, inhibit EGFR signaling resulting in reduced GBM growth and invasiveness in vitro and in vivo in both established and primary GBM cell lines. We also show that ENb primes GBM cells for proapoptotic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Furthermore, SC-delivered immunoconjugates of ENb and TRAIL target a wide spectrum of GBM cell types with varying degrees of TRAIL resistance and significantly reduce GBM growth and invasion in both established and primary invasive GBM in mice. This study demonstrates the efficacy of SC-based EGFR targeted therapy in GBMs and provides a unique approach with clinical implications.


PLOS ONE | 2012

A First-Generation Multi-Functional Cytokine for Simultaneous Optical Tracking and Tumor Therapy

Shawn D. Hingtgen; Randa Kasmieh; Elizabeth Elbayly; Irina Nesterenko; Jose-Luiz Figueiredo; Rupesh Dash; Devanand Sarkar; David R. Hall; Dima Kozakov; Sandor Vajda; Paul B. Fisher; Khalid Shah

Creating new molecules that simultaneously enhance tumor cell killing and permit diagnostic tracking is vital to overcoming the limitations rendering current therapeutic regimens for terminal cancers ineffective. Accordingly, we investigated the efficacy of an innovative new multi-functional targeted anti-cancer molecule, SM7L, using models of the lethal brain tumor Glioblastoma multiforme (GBM). Designed using predictive computer modeling, SM7L incorporates the therapeutic activity of the promising anti-tumor cytokine MDA-7/IL-24, an enhanced secretory domain, and diagnostic domain for non-invasive tracking. In vitro assays revealed the diagnostic domain of SM7L produced robust photon emission, while the therapeutic domain showed marked anti-tumor efficacy and significant modulation of p38MAPK and ERK pathways. In vivo, the unique multi-functional nature of SM7L allowed simultaneous real-time monitoring of both SM7L delivery and anti-tumor efficacy. Utilizing engineered stem cells as novel delivery vehicles for SM7L therapy (SC-SM7L), we demonstrate that SC-SM7L significantly improved pharmacokinetics and attenuated progression of established peripheral and intracranial human GBM xenografts. Furthermore, SC-SM7L anti-tumor efficacy was augmented in vitro and in vivo by concurrent activation of caspase-mediated apoptosis induced by adjuvant SC-mediated S-TRAIL delivery. Collectively, these studies define a promising new approach to treating highly aggressive cancers, including GBM, using the optimized therapeutic molecule SM7L.


Molecular Therapy | 2013

Multimechanistic Tumor Targeted Oncolytic Virus Overcomes Resistance in Brain Tumors

Kaoru Tamura; Hiroaki Wakimoto; Aayush S. Agarwal; Samuel D. Rabkin; Deepak Bhere; Robert L. Martuza; Toshihiko Kuroda; Randa Kasmieh; Khalid Shah

Only a subset of cancer patients inoculated with oncolytic herpes simplex virus (oHSV) type-1 has shown objective response in phase 1 and 2 clinical trials. This has raised speculations whether resistance of tumor cells to oHSV therapy may be a limiting factor. In this study, we have identified established and patient derived primary glioblastoma multiforme (GBM) stem cell lines (GSC) resistant to oHSV and also to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) that has recently shown promise in preclinical and initial clinical studies. We created a recombinant oHSV bearing a secretable TRAIL (oHSV-TRAIL) and hypothesized that oHSV-TRAIL could be used as a cancer therapeutic to target a broad spectrum of resistant tumors in a mechanism-based manner. Using the identified resistant GBM lines, we show that oHSV-TRAIL downregulates extracellular signal-regulated protein kinase (ERK)-mitogen-activated protein kinase (MAPK) and upregulates c-Jun N-terminal kinase (JNK) and p38-MAPK signaling, which primes resistant GBM cells to apoptosis via activation of caspase-8, -9, and -3. We further show that oHSV-TRAIL inhibits tumor growth and invasiveness and increases survival of mice bearing resistant intracerebral tumors without affecting the normal tissues. This study sheds new light on the mechanism by which oHSV and TRAIL function in concert to overcome therapeutic-resistance, and provides an oncolytic virus based platform to target a broad spectrum of different cancer types.


Neoplasia | 2007

Tumor Therapy Mediated by Lentiviral Expression of shBcl-2 and S-TRAIL

Norman Kock; Randa Kasmieh; Ralph Weissleder; Khalid Shah

Collaboration


Dive into the Randa Kasmieh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shawn D. Hingtgen

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaoru Tamura

Tokyo Medical and Dental University

View shared research outputs
Researchain Logo
Decentralizing Knowledge