Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Randal E. Morris is active.

Publication


Featured researches published by Randal E. Morris.


Cell | 1980

Receptor-mediated internalization of pseudomonas toxin by mouse fibroblasts

David Fitzgerald; Randal E. Morris; Catharine B. Saelinger

Pseudomonas exotoxin (PE) was used as a probe to study the mechanism by which protein ligands are internalized by mammalian cells. Both biochemical and electron microscopic methods were used to look at the internalization of PE by mouse LM cell fibroblasts. Our data suggest that PE enters cells by receptor-mediated endocytosis, a process previously thought to be restricted to the entry of biologically significant molecules such as lysosomal enzymes and peptide hormones. Biochemical studies showed that methylamine (20 mM) and chloroquine (10 microM) protected LM cells from the action of PE. Full protection was observed if methylamine or chloroquine was added to the monolayers simultaneously with toxin or if they were added up to 10 min after toxin binding. Later addition of amine or chloroquine afforded partial protection to the monolayers. With immunoelectron microscopy we observed that in the cold toxin bound diffusely to the cell surface but was rapidly internalized when cells were warmed to 37 degrees C. In the presence of methylamine, chloroquine or ammonium chloride, internalization did not occur. We propose that PE enters mouse fibroblasts by receptor-mediated endocytosis and that chloroquine and methylamine, agents which are known to block this process, prevent expression of toxicity.


Laboratory Investigation | 2000

Cardiac Dysfunction Occurs in the HIV-1 Transgenic Mouse Treated with Zidovudine

William Lewis; Ingrid L. Grupp; Gunter Grupp; Brian D. Hoit; Randal E. Morris; Allen M. Samarel; Leslie A. Bruggeman; Paul E. Klotman

Cardiomyopathy in AIDS is an increasingly important clinical problem. Mechanisms of AIDS cardiomyopathy were explored using AIDS transgenic mice that express replication-incompetent HIV-1 (NL4–3Δ gag/pol). Transgenic and FVB/n mice (n = 3 to 6 per cohort) received water ad libitum with and without zidovudine (3′-azido-2′,3′-deoxythymidine; AZT; 0.7 mg/ml) for 21 or 35 days. After 21 days, echocardiographic studies were performed and abundance of mRNA for cardiac sarcoplasmic reticulum calcium ATPase (SERCA2), sodium calcium exchanger (NCX1), and atrial natriuretic factor were determined individually using Northern analysis of extracts of left ventricles. After 35 days, contractile function and relaxation were analyzed in isolated work-performing hearts. Histopathological and ultrastructural (transmission electron microscopy) changes were identified. After 21 days, molecular indicators of cardiac dysfunction were found. Depressed SERCA2 and increased atrial natriuretic factor mRNA abundance occurred in left ventricles from AZT-treated transgenic mice. NCX1 abundance was unchanged. Eccentric left ventricle hypertrophy was determined echocardiographically. After 35 days, cardiac dysfunction was worst in AZT-treated and AZT-untreated transgenic mice. Decreases in the first derivative of the maximal change in left ventricle systolic pressure with respect to time (+dP/dt) occurred in transgenic mice with and without AZT. Increased half-time of relaxation and ventricular relaxation (−dP/dt) occurred in AZT-treated and -untreated transgenic mice. Increased time to peak pressure was found only in AZT-treated transgenic mice. In AZT-treated FVB/n mice, −dP/dt was decreased. Ultrastructurally, mitochondrial destruction was most pronounced in AZT-treated transgenic mice, but also was found in AZT-treated FVB/n mice. Transgenic mice that express HIV-1 demonstrate cardiac dysfunction. AZT treatment of FVB/n mice causes mitochondrial ultrastructural alterations that are similar to those in other species. In transgenic mice, AZT treatment worsens molecular and ultrastructural features of cardiomyopathy. HIV-1 constructs and AZT each contribute to cardiac dysfunction in this murine model of AIDS cardiomyopathy.


Biochimica et Biophysica Acta | 1988

Differential effects of glucocorticoid on expression of surfactant proteins in a human lung adenocarcinoma cell line

Michael A. O'Reilly; Adi F. Gazdar; Randal E. Morris; Jeffrey A. Whitsett

Synthesis of pulmonary surfactant-associated glycoproteins of Mr 28,000-36,000 (SP-A) and Mr 42,000-46,000 (proSP-B) has been identified in a continuous cell line derived from a human lung adenocarcinoma. SP-A was detected by immunoblot analysis, ELISA assay and by [35S]methionine labelling of the cells. SP-A was secreted into the media as an endoglycosidase F sensitive glycoprotein which co-migrated with the isoforms of SP-A identified in human lavage fluid by 2D-IEF-SDS-PAGE. Hybridization of cellular RNA with SP-A-specific cDNA identified an abundant 2.2 kb mRNA species, identical to that observed in human lung. SP-A RNA and protein content were markedly inhibited by dexamethasone in a dose-dependent fashion. Under identical culture conditions, synthesis of a distinct surfactant protein, SP-B, was markedly stimulated by the glucocorticoid. The SP-B precursor was secreted into the media as heterogeneous Mr 42,000-46,000 protein, pI 4.6-5.1, and was sensitive to endoglycosidase F. Synthesis of proSP-B was enhanced by the glucocorticoid in a dose-dependent fashion and was associated with increased SP-B mRNA of 2.0 kb detected by Northern blot analysis. The cell line secreted proSP-B as Mr 42,000-46,000 glycosylated protein and did not process the precursor to the Mr 7000-8000 surfactant peptide. In summary, a human adenocarcinoma cell line has been identified which synthesizes and secretes two surfactant-associated proteins, SP-A and proSP-B. Glucocorticoid enhanced SP-B but inhibited SP-A expression in this cell line. The identification of a continuous cell line secreting surfactant proteins may be useful in the study of synthesis and secretion of these important proteins and for production of the proteins for clinical uses.


Journal of Histochemistry and Cytochemistry | 1989

Binding and Uptake of Pulmonary Surfactant Protein (SP-A) by Pulmonary Type II Epithelial Cells'

Rita M. Ryan; Randal E. Morris; Ward R. Rice; Georgianne M. Ciraolo; Jeffrey A. Whitsett

A glycoprotein of Mr 26-36,000 (SP-A) is an abundant phospholipid-associated protein in pulmonary surfactant. SP-A enhances phospholipid reuptake and inhibits secretion by Type II epithelial cells in vitro. We have used two electron microscopic cytochemical methods to demonstrate selective binding and uptake of SP-A by rat pulmonary Type II epithelial cells. Using an immunogold bridging technique, we showed that SP-A binding was selective for Type II cell surfaces. Binding was dose dependent and saturable, reaching maximal binding at approximately 10 ng/ml. On warming to 23 degrees C, SP-A binding sites were clustered in coated pits on the cell surface. To characterize the internalization and intracellular routing of SP-A, we used the biotinyl ligand-avidin-gold technique. Biotinyl SP-A was bound by rat Type II epithelial cells as described above. On warming, biotinyl SP-A was seen in association with coated vesicles and was subsequently located in endosomes and multivesicular bodies. Biotinyl SP-A-gold complexes were seen in close approximation to lamellar bodies 10-60 min after warming. Binding of biotinyl SP-A was inhibited by competition with unlabeled SP-A. These results support the concept that Type II epithelial cells bind and internalize SP-A by receptor-mediated endocytosis. This newly described uptake system may play a role in the recycling of surfactant components or mediate the actions of SP-A on surfactant phospholipid secretion.


Journal of Immunology | 2001

Histoplasma capsulatum Yeasts Are Phagocytosed Via Very Late Antigen-5, Killed, and Processed for Antigen Presentation by Human Dendritic Cells

Lucy A. Gildea; Randal E. Morris; Simon L. Newman

Histoplasma capsulatum (Hc) is a facultative, intracellular parasite of world-wide importance. As the induction of cell-mediated immunity to Hc is of critical importance in host defense, we sought to determine whether dendritic cells (DC) could function as a primary APC for this pathogenic fungus. DC obtained by culture of human monocytes in the presence of GM-CSF and IL-4 phagocytosed Hc yeasts in a time-dependent manner. Upon ingestion, the intracellular growth of yeasts within DC was completely inhibited compared with rapid growth within human macrophages. Electron microscopy of DC with ingested Hc revealed that many of the yeasts were degraded as early as 2 h postingestion. In contrast to macrophages, human DC recognized Hc yeasts via the fibronectin receptor, very late Ag-5, and not via CD18 receptors. DC stimulated Hc-specific lymphocyte proliferation in a concentration-dependent manner after phagocytosis of viable and heat-killed Hc yeasts, but greater proliferation was achieved after ingestion of viable yeasts. These data demonstrate that human DC can phagocytose and degrade a fungal pathogen and subsequently process the appropriate Ags for stimulation of lymphocyte proliferation. In vivo, such interactions between DC and Hc may facilitate the induction of cell-mediated immunity.


Infection and Immunity | 2003

Rapid Apoptosis Induced by Shiga Toxin in HeLa Cells

Jun Fujii; Takashi Matsui; Daniel P. Heatherly; Kailo H. Schlegel; Peter I. Lobo; Takashi Yutsudo; Georgianne M. Ciraolo; Randal E. Morris; Tom G. Obrig

ABSTRACT Apoptosis was induced rapidly in HeLa cells after exposure to bacterial Shiga toxin (Stx1 and Stx2; 10 ng/ml). Approximately 60% of HeLa cells became apoptotic within 4 h as detected by DNA fragmentation, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay, and electron microscopy. Stx1-induced apoptosis required enzymatic activity of the Stx1A subunit, and apoptosis was not induced by the Stx2B subunit alone or by the anti-globotriaosylceramide antibody. This activity was also inhibited by brefeldin A, indicating the need for toxin processing through the Golgi apparatus. The intracellular pathway leading to apoptosis was further defined. Exposure of HeLa cells to Stx1 activated caspases 3, 6, 8, and 9, as measured both by an enzymatic assay with synthetic substrates and by detection of proteolytically activated forms of these caspases by Western immunoblotting. Preincubation of HeLa cells with substrate inhibitors of caspases 3, 6, and 8 protected the cells against Stx1-dependent apoptosis. These results led to a more detailed examination of the mitochondrial pathway of apoptosis. Apoptosis induced by Stx1 was accompanied by damage to mitochondrial membranes, measured as a reduced mitochondrial membrane potential, and increased release of cytochrome c from mitochondria at 3 to 4 h. Bid, an endogenous protein known to permeabilize mitochondrial membranes, was activated in a Stx1-dependent manner. Caspase-8 is known to activate Bid, and a specific inhibitor of caspase-8 prevented the mitochondrial damage. Although these data suggested that caspase-8-mediated cleavage of Bid with release of cytochrome c from mitochondria and activation of caspase-9 were responsible for the apoptosis, preincubation of HeLa cells with a specific inhibitor of caspase-9 did not protect against apoptosis. These results were explained by the discovery of a simultaneous Stx1-dependent increase in endogenous XIAP, a direct inhibitor of caspase-9. We conclude that the primary pathway of Stx1-induced apoptosis and DNA fragmentation in HeLa cells is unique and includes caspases 8, 6, and 3 but is independent of events in the mitochondrial pathway.


Infection and Immunity | 2005

Enhanced Killing of Candida albicans by Human Macrophages Adherent to Type 1 Collagen Matrices via Induction of Phagolysosomal Fusion

Simon L. Newman; Bindu Bhugra; Angela Holly; Randal E. Morris

ABSTRACT Candida albicans, a component of the normal flora of the alimentary tract and mucocutaneous membranes, is the leading cause of invasive fungal disease in premature infants, diabetics, and surgical patients and of oropharyngeal disease in AIDS patients. As little is known about the regulation of monocyte/macrophage anti-Candida activity, we sought to determine if fungicidal activity might be regulated by extracellular matrix proteins to which monocytes/macrophages are adherent in vivo. Compared to monocyte/macrophages that adhered to plastic, human monocytes and monocyte-derived macrophages that adhered to type 1 collagen matrices, but not to fibronectin, vitronectin, or laminin, demonstrated a significant increase in candidacidal activity. The enhancement of monocyte fungicidal activity was maintained over a 4-h period, whereas macrophage fungicidal activity was maximum at 1 h. Although adherence of monocytes and macrophages to collagen matrices concomitantly enhanced the production of superoxide anion, only the fungicidal activity of collagen-adherent monocytes was partially blocked by superoxide dismutase and catalase. Remarkably, we found that only 10% of the phagosomes in C. albicans-infected macrophages that adhered to plastic fused with lysosomes. In contrast, 80% of yeast-containing phagosomes of collagen-adherent macrophages fused with lysosomes. These data suggest that nonoxidative mechanisms are critical for human macrophage anti-Candida activity and that C. albicans pathogenicity is mediated, in part, by its ability to inhibit phagolysosomal fusion in macrophages.


Infection and Immunity | 2005

Human dendritic cell activity against Histoplasma capsulatum is mediated via phagolysosomal fusion.

Lucy A. Gildea; Georgianne M. Ciraolo; Randal E. Morris; Simon L. Newman

ABSTRACT Histoplasma capsulatum is a fungal pathogen that requires the induction of cell-mediated immunity (CMI) for host survival. We have demonstrated that human dendritic cells (DC) phagocytose H. capsulatum yeasts and, unlike human macrophages (Mø) that are permissive for intracellular growth, DC killed and degraded the fungus. In the present study, we sought to determine whether the mechanism(s) by which DC kill Histoplasma is via lysosomal hydrolases, via the production of toxic oxygen metabolites, or both. Phagosome-lysosome fusion (PL-fusion) was quantified by using fluorescein isothiocyanate-dextran and phase and fluorescence microscopy and by electron microscopy with horseradish peroxidase colloidal gold to label lysosomes. Unlike Mφ, Histoplasma-infected DC exhibited marked PL-fusion. The addition of suramin to Histoplasma-infected DC inhibited PL-fusion and DC fungicidal activity. Incubation of Histoplasma-infected DC at 18°C also concomitantly reduced PL-fusion and decreased the capacity of DC to kill and degrade H. capsulatum yeasts. Further, culture of Histoplasma-infected DC in the presence of bafilomycin, an inhibitor of the vacuolar ATPase, did not block DC anti-Histoplasma activity, indicating that phagosome acidification was not required for lysosome enzyme activity. In contrast, culture of Histoplasma-infected DC in the presence of inhibitors of the respiratory burst or inhibitors of NO synthase had little to no effect on DC fungicidal activity. These data suggest that the major mechanism by which human DC mediate anti-Histoplasma activity is through the exposure of yeasts to DC lysosomal hydrolases. Thus, DC can override one of the strategies used by H. capsulatum yeasts to survive intracellularly within Mø.


Journal of Histochemistry and Cytochemistry | 1984

Visualization of intracellular trafficking: use of biotinylated ligands in conjunction with avidin-gold colloids.

Randal E. Morris; Catharine B. Saelinger

A simple, sensitive method to visualize the binding and internalization of protein ligands by cells in culture is described. A biotinylated toxin was used as ligand, and succinoylated avidin adsorbed onto 5.2 nm gold sols was the electron-dense marker. This method affords direct localization of proteins that are on the cell surface or intracellular without need for techniques that alter membrane integrity.


Journal of Molecular Histology | 2005

Magmas expression in neoplastic human prostate.

Paul T. Jubinsky; Mary K. Short; George K. Mutema; Randal E. Morris; Georgianne M. Ciraolo; Maomi Li

Magmas, is a 13-kDa mitochondrial protein which is ubiquitously expressed in eukaryotic cells. It was identified as a granulocyte-macrophage-colony stimulating factor (GM-CSF) inducible gene in hematopoietic cells and has a key role in the transport of mitochondrial proteins in yeast. Because GM-CSF receptor levels are elevated in prostate cancer, Magmas expression was examined in normal and neoplastic tissue. Magmas protein levels were barely detectible in non-neoplastic prostate glands. Increased amounts were observed in some samples of intraepithelial neoplasia. Approximately one half of the adenocarcinoma samples examined had weak Magmas expression, while the remainder had intermediate to high levels. The increased Magmas observed in malignant tissue was a result of higher protein expression and not from changes in mitochondrial content. Interestingly, in some patients, the normal prostate tissue had more Magmas message than the malignant portion. The results indicated that Magmas expression in prostate cancer is heterogeneous and independent of clinical stage and Gleason score. Further studies are needed to determine if Magmas expression has prognostic significance in prostate cancer.

Collaboration


Dive into the Randal E. Morris's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georgianne M. Ciraolo

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Bruce F. Giffin

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuixiong Gao

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Simon L. Newman

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey A. Whitsett

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian D. Hoit

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge