Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Randall Armstrong is active.

Publication


Featured researches published by Randall Armstrong.


Proceedings of the National Academy of Sciences of the United States of America | 2011

High-throughput VDJ sequencing for quantification of minimal residual disease in chronic lymphocytic leukemia and immune reconstitution assessment

Aaron C Logan; Hong Gao; Chunlin Wang; Bita Sahaf; Carol Jones; Eleanor L. Marshall; Ismael Buño; Randall Armstrong; Andrew Fire; Kenneth I. Weinberg; Michael Mindrinos; James L. Zehnder; Scott D. Boyd; Wenzhong Xiao; Ronald W. Davis; David B. Miklos

The primary cause of poor outcome following allogeneic hematopoietic cell transplantation (HCT) for chronic lymphocytic leukemia (CLL) is disease recurrence. Detection of increasing minimal residual disease (MRD) following HCT may permit early intervention to prevent clinical relapse; however, MRD quantification remains an uncommon diagnostic test because of logistical and financial barriers to widespread use. Here we describe a method for quantifying CLL MRD using widely available consensus primers for amplification of all Ig heavy chain (IGH) genes in a mixture of peripheral blood mononuclear cells, followed by high-throughput sequencing (HTS) for disease-specific IGH sequence quantification. To achieve accurate MRD quantification, we developed a systematic bioinformatic methodology to aggregate cancer clone sequence variants arising from systematic and random artifacts occurring during IGH-HTS. We then compared the sensitivity of IGH-HTS, flow cytometry, and allele-specific oligonucleotide PCR for MRD quantification in 28 samples collected from 6 CLL patients following allogeneic HCT. Using amplimer libraries generated with consensus primers from patient blood samples, we demonstrate the sensitivity of IGH-HTS with 454 pyrosequencing to be 10−5, with a high correlation between quantification by allele-specific oligonucleotide PCR and IGH-HTS (r = 0.85). From the same dataset used to quantify MRD, IGH-HTS also allowed us to profile IGH repertoire reconstitution after HCT—information not provided by the other MRD methods. IGH-HTS using consensus primers will broaden the availability of MRD quantification in CLL and other B cell malignancies, and this approach has potential for quantitative evaluation of immune diversification following transplant and nontransplant therapies.


Journal of Clinical Oncology | 2015

Phase II Investigator-Initiated Study of Brentuximab Vedotin in Mycosis Fungoides and Sézary Syndrome With Variable CD30 Expression Level: A Multi-Institution Collaborative Project

Youn H. Kim; Mahkam Tavallaee; Uma Sundram; Katrin A. Salva; Gary S. Wood; Shufeng Li; Sima Rozati; Seema Nagpal; Michael Krathen; Sunil Reddy; Richard T. Hoppe; Annie Nguyen-Lin; Wen-Kai Weng; Randall Armstrong; Melissa Pulitzer; Ranjana H. Advani; Steven M. Horwitz

PURPOSE In contrast to Hodgkin lymphoma and systemic anaplastic large-cell lymphoma, CD30 expression of malignant lymphocytes in mycosis fungoides (MF) and Sézary syndrome (SS) is quite variable. Clinical activity and safety of brentuximab vedotin, a CD30 targeting antibody-drug conjugate, was evaluated in MF and SS. Tissue and blood biomarkers of clinical response were explored. PATIENTS AND METHODS In this phase II study, patients with MF or SS with negligible to 100% CD30 expression levels were treated with brentuximab vedotin (1.8 mg/kg) every 3 weeks for a maximum of sixteen doses. The primary end point was overall global response rate. Secondary end points included correlation of tissue CD30 expression level with clinical response, time to response, duration of response, progression-free and event-free survivals, and safety. RESULTS Of the 32 patients enrolled and treated, 30 patients had available efficacy evaluations. Objective global response was observed in 21 (70%) of 30 patients (90% CI, 53% to 83%). CD30 expression assessed by immunohistochemistry was highly variable, with a median CD30max of 13% (range, 0% to 100%). Those with <5% CD30 expression had a lower likelihood of global response than did those with 5% or greater CD30 expression (P < .005). CD163 positive tumor-associated macrophages, many of which coexpress CD30, were abundant in tissue. Peripheral neuropathy was the most common adverse event. CONCLUSION Brentuximab vedotin demonstrated significant clinical activity in treatment-refractory or advanced MF or SS with a wide range of CD30 expression levels. Additional biomarker studies may help optimize rational design of combination therapies with brentuximab vedotin.


Nature Genetics | 2015

Genomic analysis of mycosis fungoides and Sézary syndrome identifies recurrent alterations in TNFR2

Alexander Ungewickell; Aparna Bhaduri; Eon J. Rios; Jason A. Reuter; Carolyn S. Lee; Angela Mah; Ashley Zehnder; Robert S. Ohgami; Shashikant Kulkarni; Randall Armstrong; Wen-Kai Weng; Dita Gratzinger; Mahkam Tavallaee; Alain H. Rook; Michael Snyder; Youn H. Kim; Paul A. Khavari

Mycosis fungoides and Sézary syndrome comprise the majority of cutaneous T cell lymphomas (CTCLs), disorders notable for their clinical heterogeneity that can present in skin or peripheral blood. Effective treatment options for CTCL are limited, and the genetic basis of these T cell lymphomas remains incompletely characterized. Here we report recurrent point mutations and genomic gains of TNFRSF1B, encoding the tumor necrosis factor receptor TNFR2, in 18% of patients with mycosis fungoides and Sézary syndrome. Expression of the recurrent TNFR2 Thr377Ile mutant in T cells leads to enhanced non-canonical NF-κB signaling that is sensitive to the proteasome inhibitor bortezomib. Using an integrative genomic approach, we additionally discovered a recurrent CTLA4-CD28 fusion, as well as mutations in downstream signaling mediators of these receptors.


Science Translational Medicine | 2013

Minimal Residual Disease Monitoring with High-Throughput Sequencing of T Cell Receptors in Cutaneous T Cell Lymphoma

Wen-Kai Weng; Randall Armstrong; Sally Arai; Cindy Desmarais; Richard T. Hoppe; Youn H. Kim

TCRB high-throughput sequencing can monitor response to therapy in a skin lymphoma patient population. Skin Lymphoma HTS the Spot Mycosis fungoides and Sézary syndrome are two cancers of lymphocytes that arise in the skin. These diseases are not curable with standard therapies; however, they frequently enter into long periods of remission after bone marrow transplantation. Monitoring minimal residual disease (MRD) in these patients is critical for early intervention. Flow cytometry coupled with clonality determination by T cell receptor polymerase chain reaction (PCR) are the current diagnostic criteria; however, these tests lack both specificity and sensitivity. Now, Weng et al. use high-throughput sequencing of T cell receptor B chains to monitor MRD in patients with either mycosis fungoides or Sézary syndrome. They found increased sensitivity and specificity compared with flow cytometry and standard PCR, and could monitor therapy response in these patients. Monitoring MRD and determination of clinically meaningful molecular remission could greatly aid in managing these patients after transplant. Mycosis fungoides (MF) and the leukemic presentation Sézary syndrome (SS) are clonal T cell lymphomas arising from the skin and are considered noncurable with standard therapies. To develop a specific and sensitive monitoring tool, we tested the ability of high-throughput sequencing (HTS) of T cell receptors (TCRB) to monitor minimal residual disease (MRD) after allogeneic hematopoietic cell transplantation. Genomic DNA was extracted from peripheral blood mononuclear cells (PBMCs) or skin samples. The rearranged TCRβ loci were amplified using Vβ- and Jβ-specific primers, followed by HTS, to generate up to 1,000,000 reads spanning the CDR3 region of individual cells. Malignant clones were identified in diagnostic samples in all cases by a dominant CDR3 sequence. Before transplant, four patients had circulating Sézary cells by the routine flow cytometry, which was confirmed by TCRB HTS. Although the flow cytometry found no detectable Sézary cells, malignant clones were detected by TCRB HTS in all other six cases. Five patients achieved “molecular remission” in blood between +30 and +540 days after transplant. Four of these patients also achieved molecular clearance in skin after transplant. Experiments using blood samples spiked with purified Sézary cells demonstrated that TCRB HTS can detect Sézary cells at the level of 1 in 50,000 PBMCs, which is more sensitive than standard diagnostics. We have thus demonstrated the utility of TCRB HTS to assess MRD with increased sensitivity and specificity compared to other current methodologies, and to monitor response to therapy in this MF/SS patient population.


Blood | 2010

Antibodies specifically target AML antigen NuSAP1 after allogeneic bone marrow transplantation

Persis P. Wadia; Marc A. Coram; Randall Armstrong; Michael Mindrinos; Atul J. Butte; David B. Miklos

Identifying the targets of immune response after allogeneic hematopoietic cell transplantation (HCT) promises to provide relevant immune therapy candidate proteins. We used protein microarrays to serologically identify nucleolar and spindle-associated protein 1 (NuSAP1) and chromatin assembly factor 1, subunit B (p60; CHAF1b) as targets of new antibody responses that developed after allogeneic HCT. Western blots and enzyme-linked immunosorbent assays (ELISA) validated their post-HCT recognition and enabled ELISA testing of 120 other patients with various malignancies who underwent allo-HCT. CHAF1b-specific antibodies were predominantly detected in patients with acute myeloid leukemia (AML), whereas NuSAP1-specific antibodies were exclusively detected in patients with AML 1 year after transplantation (P < .001). Complete genomic exon sequencing failed to identify a nonsynonymous single nucleotide polymorphism (SNP) for NuSAP1 and CHAF1b between the donor and recipient cells. Expression profiles and reverse transcriptase-polymerase chain reaction (RT-PCR) showed NuSAP1 was predominately expressed in the bone marrow CD34(+)CD90(+) hematopoietic stem cells, leukemic cell lines, and B lymphoblasts compared with other tissues or cells. Thus, NuSAP1 is recognized as an immunogenic antigen in 65% of patients with AML following allogeneic HCT and suggests a tumor antigen role.


PLOS ONE | 2015

Freeze and Thaw of CD4+CD25+Foxp3+ Regulatory T Cells Results in Loss of CD62L Expression and a Reduced Capacity to Protect against Graft-versus-Host Disease

Mareike Florek; Dominik Schneidawind; Antonio Pierini; Jeanette Baker; Randall Armstrong; Yuqiong Pan; Dennis B. Leveson-Gower; Robert S. Negrin; Everett Meyer

The adoptive transfer of CD4+CD25+Foxp3+ regulatory T cells (Tregs) in murine models of allogeneic hematopoietic cell transplantation (HCT) has been shown to protect recipient mice from lethal acute graft-versus-host disease (GVHD) and this approach is being actively investigated in human clinical trials. Here, we examined the effects of cryopreservation on Tregs. We found that freeze and thaw of murine and human Tregs is associated with reduced expression of L-selectin (CD62L), which was previously established to be an important factor that contributes to the in vivo protective effects of Tregs. Frozen and thawed murine Tregs showed a reduced capacity to bind to the CD62L binding partner MADCAM1 in vitro as well as an impaired homing to secondary lymphoid organs in vivo. Upon adoptive transfer frozen and thawed Tregs failed to protect against lethal GVHD compared with fresh Tregs in a murine model of allogeneic HCT across major histocompatibility barriers. In summary, the direct administration of adoptively transferred frozen and thawed Tregs adversely affects their immunosuppressive potential which is an important factor to consider in the clinical implementation of Treg immunotherapies.


Molecular therapy. Methods & clinical development | 2018

Detection of Replication Competent Lentivirus Using a qPCR Assay for VSV-G

Lindsey M. Skrdlant; Randall Armstrong; Brett M. Keidaisch; Mario F. Lorente; David L. DiGiusto

Lentiviral vectors are a common tool used to introduce new and corrected genes into cell therapy products for treatment of human diseases. Although lentiviral vectors are ideal for delivery and stable integration of genes of interest into the host cell genome, they potentially pose risks to human health, such as integration-mediated transformation and generation of a replication competent lentivirus (RCL) capable of infecting non-target cells. In consideration of the latter risk, all cell-based products modified by lentiviral vectors and intended for patient use must be tested for RCL prior to treatment of the patient. Current Food and Drug Administration (FDA) guidelines recommend use of cell-based assays to this end, which can take up to 6 weeks for results. However, qPCR-based assays are a quick alternative for rapid assessment of RCL in products intended for fresh infusion. We describe here the development and qualification of a qPCR assay based on detection of envelope gene sequences (vesicular stomatitis virus G glycoprotein [VSV-G]) for RCL in accordance with Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines. Our results demonstrate the sensitivity, linearity, specificity, and reproducibility of detection of VSV-G sequences, with a low false-positive rate. These procedures are currently being used in our phase 1 clinical investigations.


Blood Advances | 2018

Infusion of donor-derived CD8+ memory T cells for relapse following allogeneic hematopoietic cell transplantation

Lori Muffly; Kevin Sheehan; Randall Armstrong; Kent P. Jensen; Keri Tate; Andrew R. Rezvani; David B. Miklos; Sally Arai; Judith A. Shizuru; Laura Johnston; Everett Meyer; Wen-Kai Weng; Ginna G. Laport; Robert S. Negrin; Samuel Strober; Robert Lowsky

Murine models showed that CD8+CD44hi memory T (TM) cells could eradicate malignant cells without inducing graft-versus-host disease (GVHD). We evaluated the feasibility and safety of infusing freshly isolated and purified donor-derived phenotypic CD8+ TM cells into adults with disease relapse after allogeneic hematopoietic cell transplantation (HCT). Phenotypic CD8 TM cells were isolated after unmobilized donor apheresis using a tandem immunomagnetic selection strategy of CD45RA depletion followed by CD8+ enrichment. Fifteen patients received CD8+ TM cells at escalating doses (1 × 106, 5 × 106, or 10 × 106 cells per kg). Thirteen received cytoreduction before CD8+ TM cell infusion, and 9 had active disease at the time of infusion. Mean yield and purity of the CD8+ TM infusion were 38.1% and 92.8%, respectively; >90% had CD8+ T effector memory phenotype, cytokine expression, and secretion profile. No adverse infusional events or dose-limiting toxicities occurred; GVHD developed in 1 patient (grade 2 liver). Ten patients (67%) maintained or achieved response (7 complete response, 1 partial response, 2 stable disease) for at least 3 months after infusion; 4 of the responders had active disease at the time of infusion. With a median follow-up from infusion of 328 days (range, 118-1328 days), median event-free survival and overall survival were 4.9 months (95% confidence interval [CI], 1-19.3 months) and 19.6 months (95% CI, 5.6 months to not reached), respectively. Collection and enrichment of phenotypic CD8+ TM cells is feasible, well tolerated, and associated with a low incidence of GVHD when administered as a manipulated infusion of donor lymphocytes in patients who have relapsed after HCT. This trial was registered at www.clinicaltrials.gov as #NCT01523223.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Dopamine responsiveness is regulated by targeted sorting of D2 receptors

Selena E. Bartlett; Johan Enquist; Frederic Woodward Hopf; Josephine H. Lee; Fredrik Gladher; Viktor Kharazia; Maria Waldhoer; William S. Mailliard; Randall Armstrong; Antonello Bonci; Jennifer L. Whistler


Biology of Blood and Marrow Transplantation | 2011

Adoptive Immunotherapy with Cytokine-Induced Killer Cells for Patients with Relapsed Hematologic Malignancies after Allogeneic Hematopoietic Cell Transplantation

Ginna G. Laport; Kevin Sheehan; Jeanette Baker; Randall Armstrong; Ruby M. Wong; Robert Lowsky; Laura J. Johnston; Judith A. Shizuru; David B. Miklos; Sally Arai; Jonathan Benjamin; Wen-Kai Weng; Robert S. Negrin

Collaboration


Dive into the Randall Armstrong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge