Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Randall C. Johnson is active.

Publication


Featured researches published by Randall C. Johnson.


Nature Genetics | 2008

MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis

Jeffrey B. Kopp; Michael W. Smith; George W. Nelson; Randall C. Johnson; Barry I. Freedman; Donald W. Bowden; Taras K. Oleksyk; Louise M. McKenzie; Hiroshi Kajiyama; Tejinder S. Ahuja; Jeffrey S. Berns; William A. Briggs; Monique E. Cho; Richard A. Dart; Paul L. Kimmel; Stephen M. Korbet; Donna M. Michel; Michele H. Mokrzycki; Jeffrey R. Schelling; Eric E. Simon; Howard Trachtman; David Vlahov; Cheryl A. Winkler

The increased burden of chronic kidney and end-stage kidney diseases (ESKD) in populations of African ancestry has been largely unexplained. To identify genetic variants predisposing to idiopathic and HIV-1–associated focal segmental glomerulosclerosis (FSGS), we carried out an admixture-mapping linkage-disequilibrium genome scan on 190 African American individuals with FSGS and 222 controls. We identified a chromosome 22 region with a genome-wide logarithm of the odds (lod) score of 9.2 and a peak lod of 12.4 centered on MYH9, a functional candidate gene expressed in kidney podocytes. Multiple MYH9 SNPs and haplotypes were recessively associated with FSGS, most strongly a haplotype spanning exons 14 through 23 (OR = 5.0, 95% CI = 3.5–7.1; P = 4 × 10−23, n = 852). This association extended to hypertensive ESKD (OR = 2.2, 95% CI = 1.5–3.4; n = 433), but not type 2 diabetic ESKD (n = 476). Genetic variation at the MYH9 locus substantially explains the increased burden of FSGS and hypertensive ESKD among African Americans.


Journal of The American Society of Nephrology | 2011

APOL1 Genetic Variants in Focal Segmental Glomerulosclerosis and HIV-Associated Nephropathy

Jeffrey B. Kopp; George W. Nelson; Karmini Sampath; Randall C. Johnson; Giulio Genovese; Ping An; David J. Friedman; William A. Briggs; Richard A. Dart; Stephen M. Korbet; Michele H. Mokrzycki; Paul L. Kimmel; Sophie Limou; Tejinder S. Ahuja; Jeffrey S. Berns; Justyna Fryc; Eric E. Simon; Michael C. Smith; Howard Trachtman; Donna M. Michel; Jeffrey R. Schelling; David Vlahov; Martin R. Pollak; Cheryl A. Winkler

Trypanolytic variants in APOL1, which encodes apolipoprotein L1, associate with kidney disease in African Americans, but whether APOL1-associated glomerular disease has a distinct clinical phenotype is unknown. Here we determined APOL1 genotypes for 271 African American cases, 168 European American cases, and 939 control subjects. In a recessive model, APOL1 variants conferred seventeenfold higher odds (95% CI 11 to 26) for focal segmental glomerulosclerosis (FSGS) and twenty-nine-fold higher odds (95% CI 13 to 68) for HIV-associated nephropathy (HIVAN). FSGS associated with two APOL1 risk alleles associated with earlier age of onset (P = 0.01) and faster progression to ESRD (P < 0.01) but similar sensitivity to steroids compared with other subjects. Individuals with two APOL1 risk alleles have an estimated 4% lifetime risk for developing FSGS, and untreated HIV-infected individuals have a 50% risk for developing HIVAN. The effect of carrying two APOL1 risk alleles explains 18% of FSGS and 35% of HIVAN; alternatively, eliminating this effect would reduce FSGS and HIVAN by 67%. A survey of world populations indicated that the APOL1 kidney risk alleles are present only on African chromosomes. In summary, African Americans carrying two APOL1 risk alleles have a greatly increased risk for glomerular disease, and APOL1-associated FSGS occurs earlier and progresses to ESRD more rapidly. These data add to the evidence base required to determine whether genetic testing for APOL1 has a use in clinical practice.


Journal of Virology | 2006

The High-Frequency Major Histocompatibility Complex Class I Allele Mamu-B*17 Is Associated with Control of Simian Immunodeficiency Virus SIVmac239 Replication

Levi Yant; Thomas C. Friedrich; Randall C. Johnson; Gemma E. May; Nicholas J. Maness; Alissa M. Enz; Jeffrey D. Lifson; David H. O'Connor; Mary Carrington; David I. Watkins

ABSTRACT Particular HLA alleles are associated with reduced human immunodeficiency virus replication. It has been difficult, however, to characterize the immune correlates of viral control. An analysis of the influence of major histocompatibility complex class I alleles on viral control in 181 simian immunodeficiency virus SIVmac239-infected rhesus macaques revealed that Mamu-B*17 was associated with a 26-fold reduction in plasma virus concentrations (P < 0.001). Mamu-B*17 was also enriched 1,000-fold in a group of animals that controlled viral replication. Even after accounting for this group, Mamu-B*17 was associated with an eightfold reduction in plasma virus concentrations (P < 0.001). Mamu-B*17-positive macaques could, therefore, facilitate our understanding of the correlates of viral control.


Journal of Virology | 2009

Human Immunodeficiency Virus Type 1-Specific CD8+ T-Cell Responses during Primary Infection Are Major Determinants of the Viral Set Point and Loss of CD4+ T Cells

Hendrik Streeck; Jonathan S. Jolin; Ying Qi; Bader Yassine-Diab; Randall C. Johnson; Douglas S. Kwon; Marylyn M. Addo; Chanson J. Brumme; Jean-Pierre Routy; Susan J. Little; Heiko Jessen; Anthony D. Kelleher; Frederick Hecht; Rafick-Pierre Sekaly; Eric S. Rosenberg; Bruce D. Walker; Mary Carrington; Marcus Altfeld

ABSTRACT Primary HIV-1 infection (PHI) is marked by a flu-like syndrome and high levels of viremia that decrease to a viral set point with the first emergence of virus-specific CD8+ T-cell responses. Here, we investigated in a large cohort of 527 subjects the immunodominance pattern of the first virus-specific cytotoxic T-lymphocyte (CTL) responses developed during PHI in comparison to CTL responses in chronic infection and demonstrated a distinct relationship between the early virus-specific CTL responses and the viral set point, as well as the slope of CD4+ T-cell decline. CTL responses during PHI followed clear hierarchical immunodominance patterns that were lost during the transition to chronic infection. Importantly, the immunodominance patterns of human immunodeficiency virus type 1 (HIV-1)-specific CTL responses detected in primary, but not in chronic, HIV-1 infection were significantly associated with the subsequent set point of viral replication. Moreover, the preservation of the initial CD8+ T-cell immunodominance patterns from the acute into the chronic phase of infection was significantly associated with slower CD4+ T-cell decline. Taken together, these data show that the specificity of the initial CTL response to HIV is critical for the subsequent control of viremia and have important implications for the rational selection of antigens for future HIV-1 vaccines.


BMC Genomics | 2010

Accounting for multiple comparisons in a genome-wide association study (GWAS)

Randall C. Johnson; George W. Nelson; Jennifer L. Troyer; James A. Lautenberger; Bailey Kessing; Cheryl A. Winkler; Stephen J. O'Brien

BackgroundAs we enter an era when testing millions of SNPs in a single gene association study will become the standard, consideration of multiple comparisons is an essential part of determining statistical significance. Bonferroni adjustments can be made but are conservative due to the preponderance of linkage disequilibrium (LD) between genetic markers, and permutation testing is not always a viable option. Three major classes of corrections have been proposed to correct the dependent nature of genetic data in Bonferroni adjustments: permutation testing and related alternatives, principal components analysis (PCA), and analysis of blocks of LD across the genome. We consider seven implementations of these commonly used methods using data from 1514 European American participants genotyped for 700,078 SNPs in a GWAS for AIDS.ResultsA Bonferroni correction using the number of LD blocks found by the three algorithms implemented by Haploview resulted in an insufficiently conservative threshold, corresponding to a genome-wide significance level of α = 0.15 - 0.20. We observed a moderate increase in power when using PRESTO, SLIDE, and simpleℳ when compared with traditional Bonferroni methods for population data genotyped on the Affymetrix 6.0 platform in European Americans (α = 0.05 thresholds between 1 × 10-7 and 7 × 10-8).ConclusionsCorrecting for the number of LD blocks resulted in an anti-conservative Bonferroni adjustment. SLIDE and simpleℳ are particularly useful when using a statistical test not handled in optimized permutation testing packages, and genome-wide corrected p-values using SLIDE, are much easier to interpret for consumers of GWAS studies.


International Journal of Cancer | 2009

Evaluation of nonviral risk factors for nasopharyngeal carcinoma in a high-risk population of Southern China.

Xiuchan Guo; Randall C. Johnson; Hong Deng; Jian Liao; Li Guan; George W. Nelson; Mingzhong Tang; Yuming Zheng; Stephen J. O'Brien; Cheryl A. Winkler; Yi Zeng

To understand the role of environmental and genetic influences on nasopharyngeal carcinoma (NPC) in populations at high risk of NPC, we have performed a case‐control study in Guangxi Province of Southern China in 2004–2005. NPC cases (n = 1,049) were compared with 785 NPC‐free matched controls who were seropositive for IgA antibodies (IgA) to Epstein‐Barr virus (EBV) capsid antigen (VCA)—a predictive marker for NPC in Chinese populations. A questionnaire was used to capture exposure and NPC family history data. Risk factors associated with NPC in a multivariant analysis model were the following: (i) a first, second or third degree relative with NPC [attributable risk (AR)= 6%, odds ratio (OR) = 3.1, 95% confidence interval (CI) = 2.0–4.9, p < 0.001]; (ii) consumption of salted fish 3 or more than 3 times per month (AR = 3%, OR = 1.9, 95% CI = 1.1–3.5, p = 0.035); (iii) exposure to domestic wood cooking fires for more than 10 years (AR = 69%, OR = 5.8, 95% CI = 2.5–13.6, p < 0.001); and (iv) exposure to occupational solvents for 10 or less years (AR = 4%, OR = 2.6, 95% CI = 1.4–4.8, p = 0.002). Consumption of preserved meats or a history of tobacco smoking were not associated with NPC (p > 0.05). We also assessed the contribution of EBV/IgA/VCA antibody serostatus to NPC risk—32.2% of NPC can be explained by IgA+ status. However, family history and environmental risk factors cumulatively explained only 2.7% of NPC development in NPC high risk population. These findings should have important public health implications for NPC risk reduction in endemic regions.


PLOS Genetics | 2011

Differential Effects of MYH9 and APOL1 Risk Variants on FRMD3 Association with Diabetic ESRD in African Americans

Barry I. Freedman; Carl D. Langefeld; Lingyi Lu; Jasmin Divers; Mary E. Comeau; Jeffrey B. Kopp; Cheryl A. Winkler; George W. Nelson; Randall C. Johnson; Nicholette D. Palmer; Pamela J. Hicks; Meredith A. Bostrom; Jessica N. Cooke; Caitrin W. McDonough; Donald W. Bowden

Single nucleotide polymorphisms (SNPs) in MYH9 and APOL1 on chromosome 22 (c22) are powerfully associated with non-diabetic end-stage renal disease (ESRD) in African Americans (AAs). Many AAs diagnosed with type 2 diabetic nephropathy (T2DN) have non-diabetic kidney disease, potentially masking detection of DN genes. Therefore, genome-wide association analyses were performed using the Affymetrix SNP Array 6.0 in 966 AA with T2DN and 1,032 non-diabetic, non-nephropathy (NDNN) controls, with and without adjustment for c22 nephropathy risk variants. No associations were seen between FRMD3 SNPs and T2DN before adjusting for c22 variants. However, logistic regression analysis revealed seven FRMD3 SNPs significantly interacting with MYH9—a finding replicated in 640 additional AA T2DN cases and 683 NDNN controls. Contrasting all 1,592 T2DN cases with all 1,671 NDNN controls, FRMD3 SNPs appeared to interact with the MYH9 E1 haplotype (e.g., rs942280 interaction p-value = 9.3E−7 additive; odds ratio [OR] 0.67). FRMD3 alleles were associated with increased risk of T2DN only in subjects lacking two MYH9 E1 risk haplotypes (rs942280 OR = 1.28), not in MYH9 E1 risk allele homozygotes (rs942280 OR = 0.80; homogeneity p-value = 4.3E−4). Effects were weaker stratifying on APOL1. FRMD3 SNPS were associated with T2DN, not type 2 diabetes per se, comparing AAs with T2DN to those with diabetes lacking nephropathy. T2DN-associated FRMD3 SNPs were detectable in AAs only after accounting for MYH9, with differential effects for APOL1. These analyses reveal a role for FRMD3 in AA T2DN susceptibility and accounting for c22 nephropathy risk variants can assist in detecting DN susceptibility genes.


Science Translational Medicine | 2010

MHC Heterozygote Advantage in Simian Immunodeficiency Virus–Infected Mauritian Cynomolgus Macaques

Shelby L. O'Connor; Jennifer J. Lhost; Ericka A. Becker; Ann M. Detmer; Randall C. Johnson; Caitlin E. MacNair; Roger W. Wiseman; Julie A. Karl; Justin M. Greene; Benjamin J. Burwitz; Benjamin N. Bimber; Simon M. Lank; Jennifer J. Tuscher; Edward T. Mee; Nicola J. Rose; Ronald C. Desrosiers; Austin L. Hughes; Thomas C. Friedrich; Mary Carrington; David H. O'Connor

This manuscript demonstrates unambiguous major histocompatibility complex heterozygote advantage in macaque monkeys infected with the same strain of simian immunodeficiency virus, suggesting that a prophylactic HIV vaccine should elicit a population of CD8+ T cells with broad specificity. A Broad View of HIV Some studies of HIV-infected people have suggested that HIV is better controlled when the individual’s immune response is broader, that is, when more parts of the HIV virus are recognized by T cells. Indeed, the lack of a broad immune response may explain why HIV vaccines have generally not been successful. Despite the importance of this question for vaccine design, it has been difficult to answer definitively because of diversity in HIV strain, sampling time after infection, individual genetics, and other variables. Now, O’Connor et al. use genetically defined Mauritian cynomolgus macaques to get around these issues and test whether a broader immune response does in fact lead to better disease control. The immune response to a virus is determined in part by the genetics at the HLA locus. This locus is important because variability in HLA class I genes determines the number of major histocompatibility complex (MHC) molecules generated; the number of MHC molecules then determines the number of epitopes that can be presented to immune CD8 T cells. Individuals who are heterozygotes at this locus are expected to have a broader immune response than do homozygotes because they have the potential to present a more diverse set of epitopes to immune cells. O’Connor and colleagues measured viral blood concentrations and cellular immune responses in cynomolgus macaques harboring identical MHC genetics and infected with the same strain of simian immunodeficiency virus; this enabled them to unambiguously define the relationship among MHC diversity, CD8 T cell breadth, and disease outcome. They found that the vast majority of macaques homozygous for MHC had viral loads nearly 80 times those of their heterozygote counterparts; the associated CD8 T cell responses, measured by immune assays that rely on visualization techniques, were inconsistent. Therefore, to better understand their results, the authors examined how the animals’ CD8 T cell epitopes changed with time. They found that viral sequences isolated from MHC heterozygotes collected 1 year after infection matched variants observed in each of their MHC homozygote counterparts at 1 year after infection, which suggested that the CD8 T cell responses in MHC heterozygotes were an assemblage of the responses from their MHC homozygote counterparts. These data collectively indicate that the potential breadth of the immune response determines viral replication: The broader the response, the less replication. This study builds on previous observational studies showing heterozygote advantage in HIV-infected people, and sets the stage for future studies exploring the mechanisms responsible for this immunological control of immunodeficiency viruses. Furthermore, through the use of these macaques with identical MHC genetics, vaccine candidates can be tested for their effectiveness in the presence of limited CD8 T lymphocyte diversity. The importance of a broad CD8 T lymphocyte (CD8-TL) immune response to HIV is unknown. Ex vivo measurements of immunological activity directed at a limited number of defined epitopes provide an incomplete portrait of the actual immune response. We examined viral loads in simian immunodeficiency virus (SIV)–infected major histocompatibility complex (MHC)–homozygous and MHC-heterozygous Mauritian cynomolgus macaques. Chronic viremia in MHC-homozygous macaques was 80 times that in MHC-heterozygous macaques. Virus from MHC-homozygous macaques accumulated 11 to 14 variants, consistent with escape from CD8-TL responses after 1 year of SIV infection. The pattern of mutations detected in MHC-heterozygous macaques suggests that their epitope-specific CD8-TL responses are a composite of those present in their MHC-homozygous counterparts. These results provide the clearest example of MHC heterozygote advantage among individuals infected with the same immunodeficiency virus strain, suggesting that broad recognition of multiple CD8-TL epitopes should be a key feature of HIV vaccines.


Human Molecular Genetics | 2010

Dense mapping of MYH9 localizes the strongest kidney disease associations to the region of introns 13 to 15

George W. Nelson; Barry I. Freedman; Donald W. Bowden; Carl D. Langefeld; Ping An; Pamela J. Hicks; Meredith A. Bostrom; Randall C. Johnson; Jeffrey B. Kopp; Cheryl A. Winkler

Admixture mapping recently identified MYH9 as a susceptibility gene for idiopathic focal segmental glomerulosclerosis (FSGS), HIV-associated nephropathy (HIVAN) and end-stage kidney disease attributed to hypertension (H-ESKD) in African Americans (AA). MYH9 encodes the heavy chain of non-muscle myosin IIA, a cellular motor involved in motility. A haplotype and its tagging SNPs spanning introns 12–23 were most strongly associated with kidney disease (OR 2–7; P < 10−8, recessive). To narrow the region of association and identify potential causal variation, we performed a dense-mapping study using 79 MYH9 SNPs in AA populations with FSGS, HIVAN and H-ESKD (typed for a subset of 46 SNPs), for a total of 2496 cases and controls. The strongest associations were for correlated SNPs rs5750250, rs2413396 and rs5750248 in introns 13, 14 and 15, a region of 5.6 kb. Rs5750250 showed OR 5.0, 8.0 and 2.8; P = 2 × 10−17, 2 × 10−10 and 3 × 10−22, respectively, for FSGS, HIVAN and H-ESKD; OR 5.7; P = 9 × 10−27 for combined FSGS and HIVAN, recessive. An independent association was observed for rs11912763 in intron 33. Neither the highly associated SNPs nor the results of resequencing MYH9 in 40 HIVAN or FSGS cases and controls revealed non-synonymous changes that could account for the disease associations. Rs2413396 and one of the highly associated SNPs in intron 23, rs4821480, are predicted splicing motif modifiers. Rs5750250 combined with rs11912763 had receiver operator characteristic (ROC) C statistics of 0.80, 0.73 and 0.65 for HIVAN, FSGS and H-ESKD, respectively, allowing prediction of genetic risk by typing two SNPs.


The Journal of Infectious Diseases | 2009

APOBEC3B Deletion and Risk of HIV-1 Acquisition

Ping An; Randall C. Johnson; John P. Phair; Gregory D. Kirk; Xiao Fang Yu; Sharyne Donfield; Susan Buchbinder; James J. Goedert; Cheryl A. Winkler

The human APOBEC3 family of cytidine deaminases provides intrinsic immunity to retroviral infection. A naturally occurring 29.5-kb deletion removes the entire APOBEC3B gene. We examined the impact of the APOBEC3B gene deletion in >4000 individuals from 5 human immunodeficiency virus type 1 (HIV-1) natural history cohorts. The hemizygous genotype had no effect on either acquisition of HIV-1 infection or progression to AIDS. However, the homozygous deletion was significantly associated with unfavorable outcomes for HIV-1 acquisition (odds ratio, 7.37; P= .024), progression to AIDS (relative hazard, 4.01; P=. 03), and viral set point (P= .04). These findings suggest that the loss of APOBEC3B may increase host susceptibility to HIV-1 acquisition and progression to AIDS and warrant further study.

Collaboration


Dive into the Randall C. Johnson's collaboration.

Top Co-Authors

Avatar

George W. Nelson

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Stephen J. O'Brien

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar

Bailey Kessing

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

James J. Goedert

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jeffrey B. Kopp

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ping An

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

James A. Lautenberger

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge