Randall F. D'Souza
University of Auckland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Randall F. D'Souza.
Physiological Reports | 2014
Randall F. D'Souza; James F. Markworth; Vandre C. Figueiredo; Paul A. Della Gatta; Aaron C. Petersen; Cameron J. Mitchell; David Cameron-Smith
Resistance exercise and whey protein supplementation are effective strategies to activate muscle cell anabolic signaling and ultimately promote increases in muscle mass and strength. In the current study, 46 healthy older men aged 60–75 (69.0 ± 0.55 years, 85.9 ± 1.8 kg, 176.8 ± 1.0 cm) performed a single bout of unaccustomed lower body resistance exercise immediately followed by ingestion of a noncaloric placebo beverage or supplement containing 10, 20, 30, or 40 g of whey protein concentrate (WPC). Intramuscular amino acid levels in muscle biopsy samples were measured by Gas Chromatography–Mass Spectrometry (GC‐MS) at baseline (before exercise and WPC supplementation) plus at 2 h and 4 h post exercise. Additionally, the extent of p70S6K phosphorylation at Thr389 in muscle biopsy homogenates was assessed by western blot. Resistance exercise alone reduced intramuscular branch chain amino acid (BCAA; leucine, isoleucine, and valine) content. Supplementation with increasing doses of whey protein prevented this fall in muscle BCAAs during postexercise recovery and larger doses (30 g and 40 g) significantly augmented postexercise muscle BCAA content above that observed following placebo ingestion. Additionally, the fold change in the phosphorylation of p70S6K (Thr389) at 2 h post exercise was correlated with the dose of whey protein consumed (r = 0.51, P < 001) and was found to be significantly correlated with intramuscular leucine content (r = 0.32, P = 0.026). Intramuscular BCAAs, and leucine in particular, appear to be important regulators of anabolic signaling in aged human muscle during postexercise recovery via reversal of exercise‐induced declines in intramuscular BCAAs.
Frontiers in Physiology | 2017
Randall F. D'Souza; Thomas Bjørnsen; Nina Zeng; Truls Raastad; David Cameron-Smith; Cameron J. Mitchell
Powerlifters are the epitome of muscular adaptation and are able to generate extreme forces. The molecular mechanisms underpinning the significant capacity for force generation and hypertrophy are not fully elucidated. MicroRNAs (miRs) are short non-coding RNA sequences that control gene expression via promotion of transcript breakdown and/or translational inhibition. Differences in basal miR expression may partially account for phenotypic differences in muscle mass and function between powerlifters and untrained age-matched controls. Muscle biopsies were obtained from m. vastus lateralis of 15 national level powerlifters (25.1 ± 5.8 years) and 13 untrained controls (24.1 ± 2.0 years). The powerlifters were stronger than the controls (isokinetic knee extension at 60°/s: 307.8 ± 51.6 Nm vs. 211.9 ± 41.9 Nm, respectively P < 0.001), and also had larger muscle fibers (type I CSA 9,122 ± 1,238 vs. 4,511 ± 798 μm2 p < 0.001 and type II CSA 11,100 ± 1,656 vs. 5,468 ± 1,477 μm2 p < 0.001). Of the 17 miRs species analyzed, 12 were differently expressed (p < 0.05) between groups with 7 being more abundant in powerlifters and five having lower expression. Established transcriptionally regulated miR downstream gene targets involved in muscle mass regulation, including myostatin and MyoD, were also differentially expressed between groups. Correlation analysis demonstrates the abundance of eight miRs was correlated to phenotype including peak strength, fiber size, satellite cell abundance, and fiber type regardless of grouping. The unique miR expression profiles between groups allow for categorization of individuals as either powerlifter or healthy controls based on a five miR signature (miR-126, -23b, -16, -23a, -15a) with considerable accuracy (100%). Thus, this unique miR expression may be important to the characterization of the powerlifter phenotype.
Journal of Nutrition Health & Aging | 2015
Amber M. Milan; Randall F. D'Souza; Shikha Pundir; Chantal A. Pileggi; Eric Thorstensen; Matthew P. G. Barnett; James F. Markworth; David Cameron-Smith; Cameron J. Mitchell
ObjectivesTo measure the postprandial plasma amino acid appearance in younger and older adults following a high protein mixed meal.DesignCross-sectional study.SettingClinical research setting.ParticipantsHealthy men and women aged 60-75 (n=15) years, and young controls aged 20-25 years (n=15) matched for body mass index and insulin sensitivity based on the homeostatic model assessment of insulin resistance.InterventionHigh protein mixed meal of complete food products.MeasurementsCirculating amino acid concentrations were determined hourly before and for 5 hours after meal ingestion.ResultsThere was no difference between cohorts in postprandial appearance of non-essential amino acids, or area under the curve of any individual amino acid or amino acid class. However, older adults had higher baseline concentrations of aspartic acid, glutamic acid, glycine, ornithine, threonine and tyrosine and lower baseline concentrations of hydroxyproline, isoleucine, leucine, methionine and valine compared to younger adults. Younger adults showed peak essential (EAA) and branched-chain amino acid (BCAA) concentrations at 1 hour post meal while older adults’ peak EAA and BCAA concentration was at 3 hours. Similarly, peak total amino acid concentrations were at 3 hours in older adults.ConclusionOlder adults digested and absorbed the protein within a mixed meal more slowly than younger adults. Delayed absorption of AA following a mixed meal of complete food products may suppress or delay protein synthesis in senescent muscle.
Prostaglandins Leukotrienes and Essential Fatty Acids | 2018
James F. Markworth; Cameron J. Mitchell; Randall F. D'Souza; Brenan R. Durainayagam; Sarah M. Mitchell; Alex H.C. Chan; Andrew J. Sinclair; Manohar L. Garg; David Cameron-Smith
Arachidonic acid (ARA), an omega-6 polyunsaturated fatty acid (PUFA), is the metabolic precursor to the eicosanoid family of lipid mediators. Eicosanoids have potent pro-inflammatory actions, but also act as important autocrine/paracrine signaling molecules in skeletal muscle growth and development. Whether dietary ARA is incorporated into skeletal muscle phospholipids and the resulting impact on intramuscular inflammatory and adaptive processes in-vivo is not known. In the current study, resistance trained men (≥1 year) received dietary supplementation with 1.5g/day ARA (n=9, 24 ± 1.5 years) or placebo (n=10, 26 ± 1.3 years) for 4-weeks while continuing their normal training regimen. Plasma and vastus lateralis muscle biopsies were collected in an overnight fasted state at baseline and week 4. ARA supplementation increased plasma content of ARA and gamma-linolenic acid, while decreasing relative abundance of linoleic acid, eicosapentaenoic acid, and dihomo-gamma-linolenic acid. In skeletal muscle, ARA and dihomo-gamma-linolenic acid content increased, whereas alpha-linolenic-acid was reduced. Compared to placebo, ARA supplementation reduced circulating platelet and monocyte number, and decreased the mRNA expression of the immune cell surface markers; neutrophil elastase/CD66b and interleukin 1-beta, in peripheral blood mononuclear cells. In muscle, ARA supplementation increased mRNA expression of the myogenic regulatory factors; MyoD and myogenin, but had no effect on a range of immune cell markers or inflammatory cytokines. These data show that dietary ARA supplementation can rapidly and safely modulate plasma and muscle fatty acid profile and promote myogenic gene expression in resistance trained men, without a risk of increasing basal systemic or intramuscular inflammation.
Journal of Applied Physiology | 2018
Cameron J. Mitchell; Randall F. D'Souza; Vandre C. Figueiredo; Alex H.C. Chan; Brenan R. Durainayagam; Sarah M. Mitchell; Andrew J. Sinclair; Ingrid M. Egner; Truls Raastad; David Cameron-Smith; James F. Markworth
Arachidonic acid (ARA), a polyunsaturated ω-6 fatty acid, acts as precursor to a number of prostaglandins with potential roles in muscle anabolism. It was hypothesized that ARA supplementation might enhance the early anabolic response to resistance exercise (RE) by increasing muscle protein synthesis (MPS) via mammalian target of rapamycin (mTOR) pathway activation and/or the late anabolic response by modulating ribosome biogenesis and satellite cell expansion. Nineteen men with ≥1 yr of resistance-training experience were randomized to consume either 1.5 g daily ARA or a corn-soy-oil placebo in a double-blind manner for 4 wk. Participants then undertook fasted RE (8 sets each of leg press and extension at 80% 1-repetition maximum), with vastus lateralis biopsies obtained before exercise, immediately postexercise, and at 2, 4, and 48 h of recovery. MPS (measured via stable isotope infusion) was not different between groups ( P = 0.212) over the 4-h recovery period. mTOR pathway members p70 S6 kinase and S6 ribosomal protein were phosphorylated postexercise ( P < 0.05), with no difference between groups. 45S preribosomal RNA increased 48 h after exercise only in ARA ( P = 0.012). Neural cell adhesion molecule-positive satellite cells per fiber increased 48 h after exercise ( P = 0.013), with no difference between groups ( P = 0.331). Prior ARA supplementation did not alter the acute anabolic response to RE in previously resistance-trained men; however, at 48 h of recovery, ribosome biogenesis was stimulated only in the ARA group. The findings do not support a mechanistic link between ARA and short-term anabolism, but ARA supplementation in conjunction with resistance training may stimulate increases in translational capacity. NEW & NOTEWORTHY Four weeks of daily arachidonic acid supplementation in trained men did not alter their acute muscle protein synthetic or anabolic signaling response to resistance exercise. However, 48 h after exercise, men supplemented with arachidonic acid showed greater ribosome biogenesis and a trend toward greater change in satellite cell content. Chronic arachidonic acid supplementation does not appear to regulate the acute anabolic response to resistance exercise but may augment muscle adaptation in the following days of recovery.
Physiological Reports | 2017
Nina Zeng; Randall F. D'Souza; Vandre C. Figueiredo; James F. Markworth; Jonathan M. Peake; Cameron J. Mitchell; David Cameron-Smith
Sestrins (1, 2, 3) are a family of stress‐inducible proteins capable of attenuating oxidative stress, regulating metabolism, and stimulating autophagy. Sequestosome1 (p62) is also a stress‐inducible multifunctional protein acting as a signaling hub for oxidative stress and selective autophagy. It is unclear whether Sestrin and p62Ser403 are regulated acutely or chronically by resistance exercise (RE) or training (RT) in human skeletal muscle. Therefore, the acute and chronic effects of RE on Sestrin and p62 in human skeletal muscle were examined through two studies. In Study 1, nine active men (22.1 ± 2.2 years) performed a bout of single‐leg strength exercises and muscle biopsies were collected before, 2, 24, and 48 h after exercise. In Study 2, 10 active men (21.3 ± 1.9 years) strength trained for 12 weeks (2 days per week) and biopsies were collected pre‐ and post‐training. Acutely, 2 h postexercise, phosphorylation of p62Ser403 was downregulated, while there was a mobility shift of Sestrin2, indicative of increased phosphorylation. Forty‐eight hours postexercise, the protein expression of both Sestrin1 and total p62 increased. Chronic exercise had no impact on the gene or protein expression of Sestrin2/3 or p62, but Sestrin1 protein was upregulated. These findings demonstrated an inverse relationship between Sestrin2 and p62 phosphorylation after a single bout of RE, indicating they are transiently regulated. Contrarily, 12 weeks of RT increased protein expression of Sestrin1, suggesting that despite the strong sequence homology of the Sestrin family, they are differentially regulated in response to acute RE and chronic RT.
Journal of Applied Physiology | 2018
Cameron J. Mitchell; Randall F. D'Souza; Sarah M. Mitchell; Vandre C. Figueiredo; Benjamin F. Miller; Karyn L. Hamilton; Frederick F. Peelor; Marcelli Coronet; Chantal A. Pileggi; Brenan R. Durainayagam; Aaron C. Fanning; Sally D. Poppitt; David Cameron-Smith
Muscle disuse results in the loss of muscular strength and size, due to an imbalance between protein synthesis (MPS) and breakdown (MPB). Protein ingestion stimulates MPS, although it is not established if protein is able to attenuate muscle loss with immobilization (IM) or influence the recovery consisting of ambulatory movement followed by resistance training (RT). Thirty men (49.9 ± 0.6 yr) underwent 14 days of unilateral leg IM, 14 days of ambulatory recovery (AR), and a further six RT sessions over 14 days. Participants were randomized to consume an additional 20 g of dairy protein or placebo with a meal during the intervention. Isometric knee extension strength was reduced following IM (-24.7 ± 2.7%), partially recovered with AR (-8.6 ± 2.6%), and fully recovered after RT (-0.6 ± 3.4%), with no effect of supplementation. Thigh muscle cross-sectional area decreased with IM (-4.1 ± 0.5%), partially recovered with AR (-2.1 ± 0.5%), and increased above baseline with RT (+2.2 ± 0.5%), with no treatment effect. Myofibrillar MPS, measured using deuterated water, was unaltered by IM, with no effect of protein. During AR, MPS was increased only with protein supplementation. Protein supplementation did not attenuate the loss of muscle size and function with disuse or potentiate recovery but enhanced myofibrillar MPS during AR. NEW & NOTEWORTHY Twenty grams of daily protein supplementation does not attenuate the loss of muscle size and function induced by 2 wk of muscle disuse or potentiate recovery in middle-age men. Average mitochondrial but not myofibrillar muscle protein synthesis was attenuated during immobilization with no effect of supplementation. Protein supplementation increased myofibrillar protein synthesis during a 2-wk period of ambulatory recovery following disuse but without group differences in phenotype recovery.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2018
Randall F. D'Souza; Nina Zeng; James F. Markworth; Vandre C. Figueiredo; Truls Raastad; Jeff S. Coombes; Jonathan M. Peake; David Cameron-Smith; Cameron J. Mitchell
Resistance training (RT) increases muscle fiber size and induces angiogenesis to maintain capillary density. Cold water immersion (CWI), a common postexercise recovery modality, may improve acute recovery, but it attenuates muscle hypertrophy compared with active recovery (ACT). It is unknown if CWI following RT alters muscle fiber type expression or angiogenesis. Twenty-one men strength trained for 12 wk, with either 10 min of CWI ( n = 11) or ACT ( n = 10) performed following each session. Vastus lateralis biopsies were collected at rest before and after training. Type IIx myofiber percent decreased ( P = 0.013) and type IIa myofiber percent increased with training ( P = 0.012), with no difference between groups. The number of capillaries per fiber increased from pretraining in the CWI group ( P = 0.004) but not the ACT group ( P = 0.955). Expression of myosin heavy chain genes ( MYH1 and MYH2), encoding type IIx and IIa fibers, respectively, decreased in the ACT group, whereas MYH7 (encoding type I fibers) increased in the ACT group versus CWI ( P = 0.004). Myosin heavy chain IIa protein increased with training ( P = 0.012) with no difference between groups. The proangiogenic vascular endothelial growth factor protein decreased posttraining in the ACT group versus CWI ( P < 0.001), whereas antiangiogenic Sprouty-related, EVH1 domain-containing protein 1 protein increased with training in both groups ( P = 0.015). Expression of microRNAs that regulate muscle fiber type (miR-208b and -499a) and angiogenesis (miR-15a, -16, and -126) increased only in the ACT group ( P < 0.05). CWI recovery after each training session altered the angiogenic and fiber type-specific response to RT through regulation at the levels of microRNA, gene, and protein expression.
Physiological Genomics | 2018
Cameron J. Mitchell; Randall F. D'Souza; William Schierding; Nina Zeng; Farha Ramzan; Justin M. O'Sullivan; Sally D. Poppitt; David Cameron-Smith
The loss of muscle size, strength, and quality with aging is a major determinant of morbidity and mortality in the elderly. The regulatory pathways that impact the muscle phenotype include the translational regulation maintained by microRNAs (miRNA). Yet the miRNAs that are expressed in human skeletal muscle and relationship to muscle size, strength, and quality are unknown. Using next-generation sequencing, we selected the 50 most abundantly expressed miRNAs and then analyzed them in vastus lateralis muscle, obtained by biopsy from middle-aged males ( n = 48; 50.0 ± 4.3 yr). Isokinetic strength testing and midthigh computed tomography was undertaken for muscle phenotype analysis. Muscle attenuation was measured by computerized tomography and is inversely proportional to myofiber lipid content. miR-486-5p accounted for 21% of total miR sequence reads, with miR-10b-5p, miR-133a-3p, and miR-22-3p accounting for a further 15, 12, and 10%, respectively. Isokinetic knee extension strength and muscle cross-sectional area were positively correlated with miR-100-5p, miR-99b-5p, and miR-191-5p expression. Muscle attenuation was negatively correlated to let-7f-5p, miR-30d-5p, and miR-125b-5p expression. In silico analysis implicates miRNAs related to strength and muscle size in the regulation of mammalian target of rapamycin, while miRNAs related to muscle attenuation may have potential roles regulating the transforming growth factor-β/SMAD3 pathway.
Experimental Gerontology | 2018
Nina Zeng; Randall F. D'Souza; Cameron J. Mitchell; David Cameron-Smith
&NA; A gradual loss of skeletal muscle mass is a common feature of aging, leading to impaired insulin sensitivity and mobility. Sestrin1, 2, 3 are multifunctional proteins that regulate the mammalian target of rapamycin complex (mTORC1), autophagy and redox homeostasis. It is unclear how aging affects Sestrins and their downstream targets in human, therefore this study examined the basal expression of Sestrins in three age groups, young, middle‐aged and older men and explored the mTORC1 pathway, autophagy markers and antioxidant regulation. Older men had less Sestrin1 and 3 protein and a different pattern of Sestrin2 electrophoretic mobility. The mRNA expression of SESN1 was upregulated in older men, but the discrepancy was not by microRNA expression. Although protein expressions of Sestrins were downregulated with aging, phosphorylation of AMP‐dependent protein kinase (AMPK&agr;Thr172) and read‐outs of mTORC1 activation, ribosomal protein S6 kinase 1 (p70S6K1Thr421/Ser424) and 4E‐binding protein 1 (4E‐BP1) mobility shift were unaltered. However, total p70S6K1 and 4E‐BP1 were reduced in middle‐aged and older men. The mRNA expressions of autophagic markers including microtubule‐associated protein 1 light chain 3 (LC3) and BCL2 interacting protein 3 (BNIP3) were upregulated in middle‐aged and older men. Although nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2) was upregulated in older men, the protein and mRNA expressions of its downstream antioxidants were either increased, decreased or unaltered. No clear relationship was observed between Sestrins and their downstream targets, yet it can be concluded that Sestrins proteins are clearly downregulated with aging. HighlightsOlder men had less Sestrin1 and 3 protein and a different pattern of electrophoretic mobility for Sestrin2.Discordance between the gene and protein expression for Sestrin1 was observed in older men.Sestrin proteins were downregulated with increasing age but mTORC1 activity was not affected.