Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Randall L. Woltjer is active.

Publication


Featured researches published by Randall L. Woltjer.


Journal of Neuropathology and Experimental Neurology | 2012

Correlation of Alzheimer Disease Neuropathologic Changes With Cognitive Status: A Review of the Literature

Peter T. Nelson; Irina Alafuzoff; Eileen H. Bigio; Constantin Bouras; Heiko Braak; Nigel J. Cairns; Rudolph J. Castellani; Barbara J. Crain; Peter F. Davies; Kelly Del Tredici; Charles Duyckaerts; Matthew P. Frosch; Vahram Haroutunian; Patrick R. Hof; Christine M. Hulette; Bradley T. Hyman; Takeshi Iwatsubo; Kurt A. Jellinger; Gregory A. Jicha; Eniko Veronika Kovari; Walter A. Kukull; James B. Leverenz; Seth Love; Ian R. Mackenzie; David Mann; Eliezer Masliah; Ann C. McKee; Thomas J. Montine; John C. Morris; Julie A. Schneider

Abstract Clinicopathologic correlation studies are critically important for the field of Alzheimer disease (AD) research. Studies on human subjects with autopsy confirmation entail numerous potential biases that affect both their general applicability and the validity of the correlations. Many sources of data variability can weaken the apparent correlation between cognitive status and AD neuropathologic changes. Indeed, most persons in advanced old age have significant non-AD brain lesions that may alter cognition independently of AD. Worldwide research efforts have evaluated thousands of human subjects to assess the causes of cognitive impairment in the elderly, and these studies have been interpreted in different ways. We review the literature focusing on the correlation of AD neuropathologic changes (i.e. &bgr;-amyloid plaques and neurofibrillary tangles) with cognitive impairment. We discuss the various patterns of brain changes that have been observed in elderly individuals to provide a perspective forunderstanding AD clinicopathologic correlation and conclude that evidence from many independent research centers strongly supports the existence of a specific disease, as defined by the presence of A&bgr; plaques and neurofibrillary tangles. Although A&bgr; plaques may play a key role in AD pathogenesis, the severity of cognitive impairment correlates best with the burden of neocortical neurofibrillary tangles.


Acta Neuropathologica | 2014

Primary age-related tauopathy (PART): a common pathology associated with human aging

John F. Crary; John Q. Trojanowski; Julie A. Schneider; Jose F. Abisambra; Erin L. Abner; Irina Alafuzoff; Steven E. Arnold; Johannes Attems; Thomas G. Beach; Eileen H. Bigio; Nigel J. Cairns; Dennis W. Dickson; Marla Gearing; Lea T. Grinberg; Patrick R. Hof; Bradley T. Hyman; Kurt A. Jellinger; Gregory A. Jicha; Gabor G. Kovacs; David Knopman; Julia Kofler; Walter A. Kukull; Ian R. Mackenzie; Eliezer Masliah; Ann C. McKee; Thomas J. Montine; Melissa E. Murray; Janna H. Neltner; Ismael Santa-Maria; William W. Seeley

We recommend a new term, “primary age-related tauopathy” (PART), to describe a pathology that is commonly observed in the brains of aged individuals. Many autopsy studies have reported brains with neurofibrillary tangles (NFTs) that are indistinguishable from those of Alzheimer’s disease (AD), in the absence of amyloid (Aβ) plaques. For these “NFT+/Aβ−” brains, for which formal criteria for AD neuropathologic changes are not met, the NFTs are mostly restricted to structures in the medial temporal lobe, basal forebrain, brainstem, and olfactory areas (bulb and cortex). Symptoms in persons with PART usually range from normal to amnestic cognitive changes, with only a minority exhibiting profound impairment. Because cognitive impairment is often mild, existing clinicopathologic designations, such as “tangle-only dementia” and “tangle-predominant senile dementia”, are imprecise and not appropriate for most subjects. PART is almost universally detectable at autopsy among elderly individuals, yet this pathological process cannot be specifically identified pre-mortem at the present time. Improved biomarkers and tau imaging may enable diagnosis of PART in clinical settings in the future. Indeed, recent studies have identified a common biomarker profile consisting of temporal lobe atrophy and tauopathy without evidence of Aβ accumulation. For both researchers and clinicians, a revised nomenclature will raise awareness of this extremely common pathologic change while providing a conceptual foundation for future studies. Prior reports that have elucidated features of the pathologic entity we refer to as PART are discussed, and working neuropathological diagnostic criteria are proposed.


Nature Genetics | 2010

Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions

Vivianna M. Van Deerlin; Patrick Sleiman; Maria Martinez-Lage; Alice Chen-Plotkin; Li-San Wang; Neill R. Graff-Radford; Dennis W. Dickson; Rosa Rademakers; Bradley F. Boeve; Murray Grossman; Steven E. Arnold; David Mann; Stuart Pickering-Brown; Harro Seelaar; Peter Heutink; John C. van Swieten; Jill R. Murrell; Bernardino Ghetti; Salvatore Spina; Jordan Grafman; John R. Hodges; Maria Grazia Spillantini; Sid Gilman; Andrew P. Lieberman; Jeffrey Kaye; Randall L. Woltjer; Eileen H. Bigio; M.-Marsel Mesulam; Safa Al-Sarraj; Claire Troakes

Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. The predominant neuropathology is FTLD with TAR DNA-binding protein (TDP-43) inclusions (FTLD-TDP). FTLD-TDP is frequently familial, resulting from mutations in GRN (which encodes progranulin). We assembled an international collaboration to identify susceptibility loci for FTLD-TDP through a genome-wide association study of 515 individuals with FTLD-TDP. We found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium block on 7p21 that contains TMEM106B. Three SNPs retained genome-wide significance following Bonferroni correction (top SNP rs1990622, P = 1.08 × 10−11; odds ratio, minor allele (C) 0.61, 95% CI 0.53–0.71). The association replicated in 89 FTLD-TDP cases (rs1990622; P = 2 × 10−4). TMEM106B variants may confer risk of FTLD-TDP by increasing TMEM106B expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in individuals with mutations in GRN. Our data implicate variants in TMEM106B as a strong risk factor for FTLD-TDP, suggesting an underlying pathogenic mechanism.


Annals of Neurology | 2010

Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA).

Michael C. Kruer; Coro Paisán-Ruiz; Nathalie Boddaert; Moon Y. Yoon; Hiroko Hama; Allison Gregory; Alessandro Malandrini; Randall L. Woltjer; Arnold Munnich; Stéphanie Gobin; Brenda J. Polster; Silvia Palmeri; Simon Edvardson; John Hardy; Henry Houlden; Susan J. Hayflick

Neurodegeneration with brain iron accumulation (NBIA) represents a distinctive phenotype of neurodegenerative disease for which several causative genes have been identified. The spectrum of neurologic disease associated with mutations in NBIA genes is broad, with phenotypes that range from infantile neurodegeneration and death in childhood to adult‐onset parkinsonism‐dystonia. Here we report the discovery of a novel gene that leads to a distinct form of NBIA.


The FASEB Journal | 2005

Proteomic analysis of neurofibrillary tangles in Alzheimer disease identifies GAPDH as a detergent-insoluble paired helical filament tau binding protein

Qin Wang; Randall L. Woltjer; Patrick J. Cimino; Catherine Pan; Kathleen S. Montine; Jing Zhang; Thomas J. Montine

We performed proteomic analysis of neurofibrillary tangles (NFTs) obtained by laser capture microdissection from pyramidal neurons in hippocampal sector CA1 in patients with Alzheimer disease (AD) using liquid chromatography (LC)‐mass spectrometry (MS)/MS. We discovered a total of 155 proteins in laser captured NFTs, 72 of which were identified by multiple unique peptides. Of these 72 proteins, 63 had previously unknown association with NFTs; one of these was glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH). We validated by immunohistochemistry that GAPDH colocalized with the majority of NFTs as well as plaque‐like structures in AD brain and was co‐immunoprecipitated by antibodies to abnormal forms of tau in AD, but not tau from AD temporal cortex. Characterization of GAPDH showed that it, along with phosphorylated tau and Aβ peptides, was present in detergent‐insoluble fractions from AD temporal cortex but not from age‐matched controls. These data are the first proteomic investigation of NFTs. Moreover, our results validate this approach by demonstrating that GAPDH, a glycolytic and microtubule binding protein, not only co‐localized to NFTs and immunoprecipitated with PHF‐tau, but also is one of the few proteins known to undergo conversion to a detergent‐insoluble form in AD.


JAMA Neurology | 2010

The Spectrum of Mutations in Progranulin: A Collaborative Study Screening 545 Cases of Neurodegeneration

Chang En Yu; Bird Td; Lynn M. Bekris; Thomas J. Montine; James B. Leverenz; Ellen J. Steinbart; Nichole M. Galloway; Howard Feldman; Randall L. Woltjer; Carol A. Miller; Elisabeth McCarty Wood; Murray Grossman; Leo McCluskey; Christopher M. Clark; Manuela Neumann; Adrian Danek; Douglas Galasko; Steven E. Arnold; Alice Chen-Plotkin; Anna Karydas; Bruce L. Miller; John Q. Trojanowski; Virginia M.-Y. Lee; Gerard D. Schellenberg; Vivianna M. Van Deerlin

BACKGROUND Mutation in the progranulin gene (GRN) can cause frontotemporal dementia (FTD). However, it is unclear whether some rare FTD-related GRN variants are pathogenic and whether neurodegenerative disorders other than FTD can also be caused by GRN mutations. OBJECTIVES To delineate the range of clinical presentations associated with GRN mutations and to define pathogenic candidacy of rare GRN variants. DESIGN Case-control study. SETTING Clinical and neuropathology dementia research studies at 8 academic centers. PARTICIPANTS Four hundred thirty-four patients with FTD, including primary progressive aphasia, semantic dementia, FTD/amyotrophic lateral sclerosis (ALS), FTD/motor neuron disease, corticobasal syndrome/corticobasal degeneration, progressive supranuclear palsy, Pick disease, dementia lacking distinctive histopathology, and pathologically confirmed cases of frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U); and 111 non-FTD cases (controls) in which TDP-43 deposits were a prominent neuropathological feature, including subjects with ALS, Guam ALS and/or parkinsonism dementia complex, Guam dementia, Alzheimer disease, multiple system atrophy, and argyrophilic grain disease. MAIN OUTCOME MEASURES Variants detected on sequencing of all 13 GRN exons and at least 80 base pairs of flanking introns, and their pathogenic candidacy determined by in silico and ex vivo splicing assays. RESULTS We identified 58 genetic variants that included 26 previously unknown changes. Twenty-four variants appeared to be pathogenic, including 8 novel mutations. The frequency of GRN mutations was 6.9% (30 of 434) of all FTD-spectrum cases, 21.4% (9 of 42) of cases with a pathological diagnosis of FTLD-U, 16.0% (28 of 175) of FTD-spectrum cases with a family history of a similar neurodegenerative disease, and 56.2% (9 of 16) of cases of FTLD-U with a family history. CONCLUSIONS Pathogenic mutations were found only in FTD-spectrum cases and not in other related neurodegenerative diseases. Haploinsufficiency of GRN is the predominant mechanism leading to FTD.


JAMA Neurology | 2011

Ecology of the Aging Human Brain

Joshua A. Sonnen; Karen Santa Cruz; Laura S. Hemmy; Randall L. Woltjer; James B. Leverenz; Kathleen S. Montine; Clifford R. Jack; Jeffrey Kaye; Kelvin O. Lim; Eric B. Larson; Lon R. White; Thomas J. Montine

BACKGROUND Alzheimer disease, cerebral vascular brain injury, and isocortical Lewy body disease (LBD) are the major contributors to dementia in community- and population-based studies. OBJECTIVE To estimate the prevalence of clinically silent forms of these diseases in cognitively normal (CN) adults. DESIGN Autopsy study. SETTING Community- and population based. PARTICIPANTS A total of 1672 brain autopsies from the Adult Changes in Thought study, Honolulu-Asia Aging Study, Nun Study, and Oregon Brain Aging Study, of which 424 met the criteria for CN. MAIN OUTCOME MEASURES Of these, 336 cases had a comprehensive neuropathologic examination of neuritic plaque density, Braak stage for neurofibrillary tangles, LB distribution, and number of cerebral microinfarcts. RESULTS Forty-seven percent of CN cases had moderate or frequent neuritic plaque density; of these, 6% also had Braak stage V or VI for neurofibrillary tangles. Fifteen percent of CN cases had medullary LBD; 8% also had nigral and 4% isocortical LBD. The presence of any cerebral microinfarcts was identified in 33% and of high-level cerebral microinfarcts in 10% of CN individuals. Overall, the burden of lesions in each individual and their comorbidity varied widely within each study but were similar across studies. CONCLUSIONS These data show an individually varying complex convergence of subclinical diseases in the brain of older CN adults. Appreciating this ecology should help guide future biomarker and neuroimaging studies and clinical trials that focus on community- and population-based cohorts.


Neurology | 2013

Neuropathologic basis of white matter hyperintensity accumulation with advanced age

Deniz Erten-Lyons; Randall L. Woltjer; Jeffrey Kaye; Nora Mattek; Hiroko H. Dodge; Sarah Green; Huong Tran; Diane B. Howieson; Katherine Wild; Lisa C. Silbert

Objective: To determine which vascular pathology measure most strongly correlates with white matter hyperintensity (WMH) accumulation over time, and whether Alzheimer disease (AD) neuropathology correlates with WMH accumulation. Methods: Sixty-six older persons longitudinally followed as part of an aging study were included for having an autopsy and >1 MRI scan, with last MRI scan within 36 months of death. Mixed-effects models were used to examine the associations between longitudinal WMH accumulation and the following neuropathologic measures: myelin pallor, arteriolosclerosis, microvascular disease, microinfarcts, lacunar infarcts, large-vessel infarcts, atherosclerosis, neurofibrillary tangle rating, and neuritic plaque score. Each measure was included one at a time in the model, adjusted for duration of follow-up and age at death. A final model included measures showing an association with p < 0.1. Results: Mean age at death was 94.5 years (5.5 SD). In the final mixed-effects models, arteriolosclerosis, myelin pallor, and Braak score remained significantly associated with increased WMH accumulation over time. In post hoc analysis, we found that those with Braak score 5 or 6 were more likely to also have high atherosclerosis present compared with those with Braak score 1 or 2 (p = 0.003). Conclusion: Accumulating white matter changes in advanced age are likely driven by small-vessel ischemic disease. Additionally, these results suggest a link between AD pathology and white matter integrity disruption. This may be due to wallerian degeneration secondary to neurodegenerative changes. Alternatively, a shared mechanism, for example ischemia, may lead to both vascular brain injury and neurodegenerative changes of AD. The observed correlation between atherosclerosis and AD pathology supports the latter.


Genome Medicine | 2013

Genes and pathways underlying regional and cell type changes in Alzheimer's disease.

Jeremy A. Miller; Randall L. Woltjer; Jeff M Goodenbour; Steve Horvath; Daniel H. Geschwind

BackgroundTranscriptional studies suggest Alzheimers disease (AD) involves dysfunction of many cellular pathways, including synaptic transmission, cytoskeletal dynamics, energetics, and apoptosis. Despite known progression of AD pathologies, it is unclear how such striking regional vulnerability occurs, or which genes play causative roles in disease progression.MethodsTo address these issues, we performed a large-scale transcriptional analysis in the CA1 and relatively less vulnerable CA3 brain regions of individuals with advanced AD and nondemented controls. In our study, we assessed differential gene expression across region and disease status, compared our results to previous studies of similar design, and performed an unbiased co-expression analysis using weighted gene co-expression network analysis (WGCNA). Several disease genes were identified and validated using qRT-PCR.ResultsWe find disease signatures consistent with several previous microarray studies, then extend these results to show a relationship between disease status and brain region. Specifically, genes showing decreased expression with AD progression tend to show enrichment in CA3 (and vice versa), suggesting transcription levels may reflect a regions vulnerability to disease. Additionally, we find several candidate vulnerability (ABCA1, MT1H, PDK4, RHOBTB3) and protection (FAM13A1, LINGO2, UNC13C) genes based on expression patterns. Finally, we use a systems-biology approach based on WGCNA to uncover disease-relevant expression patterns for major cell types, including pathways consistent with a key role for early microglial activation in AD.ConclusionsThese results paint a picture of AD as a multifaceted disease involving slight transcriptional changes in many genes between regions, coupled with a systemic immune response, gliosis, and neurodegeneration. Despite this complexity, we find that a consistent picture of gene expression in AD is emerging.


Neurology | 2013

New NBIA subtype Genetic, clinical, pathologic, and radiographic features of MPAN

Penelope Hogarth; Allison Gregory; Michael C. Kruer; Lynn Sanford; Wendy Wagoner; Marvin R. Natowicz; Robert T. Egel; S. H. Subramony; Jennifer G. Goldman; Elizabeth Berry-Kravis; Nicola Foulds; Simon Hammans; Isabelle Desguerre; Diana Rodriguez; Callum Wilson; Andrea Diedrich; Sarah Green; Huong Tran; Lindsay Reese; Randall L. Woltjer; Susan J. Hayflick

Objective: To assess the frequency of mutations in C19orf12 in the greater neurodegeneration with brain iron accumulation (NBIA) population and further characterize the associated phenotype. Methods: Samples from 161 individuals with idiopathic NBIA were screened, and C19orf12 mutations were identified in 23 subjects. Direct examinations were completed on 8 of these individuals, and medical records were reviewed on all 23. Histochemical and immunohistochemical studies were performed on brain tissue from one deceased subject. Results: A variety of mutations were detected in this cohort, in addition to the Eastern European founder mutation described previously. The characteristic clinical features of mitochondrial membrane protein-associated neurodegeneration (MPAN) across all age groups include cognitive decline progressing to dementia, prominent neuropsychiatric abnormalities, and a motor neuronopathy. A distinctive pattern of brain iron accumulation is universal. Neuropathologic studies revealed neuronal loss, widespread iron deposits, and eosinophilic spheroidal structures in the basal ganglia. Lewy neurites were present in the globus pallidus, and Lewy bodies and neurites were widespread in other areas of the corpus striatum and midbrain structures. Conclusions: MPAN is caused by mutations in C19orf12 leading to NBIA and prominent, widespread Lewy body pathology. The clinical phenotype is recognizable and distinctive, and joins pantothenate kinase–associated neurodegeneration and PLA2G6-associated neurodegeneration as one of the major forms of NBIA.

Collaboration


Dive into the Randall L. Woltjer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deniz Erten-Lyons

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric B. Larson

Group Health Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge