Randall S. Prather
University of Missouri
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Randall S. Prather.
Science | 2008
Christopher S. Rogers; David A. Stoltz; David K. Meyerholz; Lynda S. Ostedgaard; Tatiana Rokhlina; Peter J. Taft; Mark P. Rogan; Alejandro A. Pezzulo; Philip H. Karp; Omar A. Itani; Amanda C. Kabel; Christine L. Wohlford-Lenane; Greg J. Davis; Robert A. Hanfland; Tony L. Smith; Melissa Samuel; David Wax; Clifton N. Murphy; August Rieke; Kristin M. Whitworth; Aliye Uc; Timothy D. Starner; Kim A. Brogden; Joel Shilyansky; Paul B. McCray; Joseph Zabner; Randall S. Prather; Michael J. Welsh
Almost two decades after CFTR was identified as the gene responsible for cystic fibrosis (CF), we still lack answers to many questions about the pathogenesis of the disease, and it remains incurable. Mice with a disrupted CFTR gene have greatly facilitated CF studies, but the mutant mice do not develop the characteristic manifestations of human CF, including abnormalities of the pancreas, lung, intestine, liver, and other organs. Because pigs share many anatomical and physiological features with humans, we generated pigs with a targeted disruption of both CFTR alleles. Newborn pigs lacking CFTR exhibited defective chloride transport and developed meconium ileus, exocrine pancreatic destruction, and focal biliary cirrhosis, replicating abnormalities seen in newborn humans with CF. The pig model may provide opportunities to address persistent questions about CF pathogenesis and accelerate discovery of strategies for prevention and treatment.
Science Translational Medicine | 2010
David A. Stoltz; David K. Meyerholz; Alejandro A. Pezzulo; Mark P. Rogan; Greg J. Davis; Robert A. Hanfland; Chris Wohlford-Lenane; Cassie L. Dohrn; Jennifer A. Bartlett; George A. Nelson; Eugene H. Chang; Peter J. Taft; Paula S. Ludwig; Mira Estin; Emma E. Hornick; Janice L. Launspach; Melissa Samuel; Tatiana Rokhlina; Philip H. Karp; Lynda S. Ostedgaard; Aliye Uc; Timothy D. Starner; Alexander R. Horswill; Kim A. Brogden; Randall S. Prather; Sandra S. Richter; Joel Shilyansky; Paul B. McCray; Joseph Zabner; Michael J. Welsh
The lungs of just-born piglets with cystic fibrosis fail to efficiently eliminate bacteria, suggesting that lung problems in cystic fibrosis patients may be secondary to impaired antibacterial defense mechanisms. A Matter of Life and Breath The CafePress and Zazzle Web sites and most yoga-wear boutiques sport an array of teeshirts, bumper stickers, and water bottles prepared to offer simple advice to those living a harried life: “Just breathe.” Not so simple for a cystic fibrosis (CF) patient. Very early on, physicians recognized that difficulty breathing was the most ominous of the mosaic of symptoms that characterize this syndrome. Indeed, lung disease is the main cause of death in cystic fibrosis patients, but the lack of an animal model that mirrors the CF lung pathology seen in people has slowed translational cystic fibrosis research. Now, Stoltz et al. report findings in cystic fibrosis pigs that survive long enough to develop human-like lung disease. At the heart of this recessive genetic disease is the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride-ion channel. CF-causing mutations in the CFTR gene give rise to an aberrant channel that is defective in its ability to transport ions and water across cell membranes, resulting in a dizzying array of defects in the pancreas, intestines, reproductive system, liver, and lungs. It has been hypothesized that the impaired channel causes cells that line body cavities and passageways to become coated with thick mucus. In such an environment, bacteria thrive, leading to the chronic infections characteristic of this disease. However, the precise mechanisms by which CFTR mutations manifest as the complex phenotypes that constitute CF remain unclear, particularly with respect to the inflamed and infected airways of the CF lung. Despite substantial research efforts, scientists have been unable to achieve two crucial goals,to mold an animal model that mimics human CF lung disease and to pinpoint the trigger of CF lung pathology in pristine airways. Stoltz et al. tackled both of these obstacles by producing genetically modified CF pigs and analyzing their airways from birth to 6 months of age. Their studies revealed a spontaneously arising human-like lung disease that developed over time and had the CF hallmarks: multibacterial infections, inflammation, and mucus buildup. Although the lungs of the newborn CF piglets were not yet inflamed, they were less likely to be sterile and less able to eliminate bacteria that had been introduced into their lungs, relative to wild-type animals. Together, these findings suggest that bacterial infiltration spurs the pattern of lung inflammation and pathogenesis associated with CF. Having a clearer conception of CF lung disease can help clinicians devise preventive treatments that can be initiated early in the lives of CF patients. Such interventions may let CF suffers live and breath more fully. Lung disease causes most of the morbidity and mortality in cystic fibrosis (CF). Understanding the pathogenesis of this disease has been hindered, however, by the lack of an animal model with characteristic features of CF. To overcome this problem, we recently generated pigs with mutated CFTR genes. We now report that, within months of birth, CF pigs spontaneously developed hallmark features of CF lung disease, including airway inflammation, remodeling, mucus accumulation, and infection. Their lungs contained multiple bacterial species, suggesting that the lungs of CF pigs have a host defense defect against a wide spectrum of bacteria. In humans, the temporal and causal relations between inflammation and infection have remained uncertain. To investigate these processes, we studied newborn pigs. Their lungs showed no inflammation but were less often sterile than controls. Moreover, after introduction of bacteria into their lungs, pigs with CF failed to eradicate bacteria as effectively as wild-type pigs. These results suggest that impaired bacterial elimination is the pathogenic event that initiates a cascade of inflammation and pathology in CF lungs. Our finding that pigs with CF have a host defense defect against bacteria within hours of birth provides an opportunity to further investigate CF pathogenesis and to test therapeutic and preventive strategies that could be deployed before secondary consequences develop.
Nature Biotechnology | 2006
Liangxue Lai; Jing X. Kang; Rongfeng Li; Jingdong Wang; William T. Witt; Hwan Yul Yong; Yanhong Hao; David Wax; Clifton N. Murphy; August Rieke; Melissa Samuel; Michael L. Linville; Scott W. Korte; Rhobert W. Evans; Thomas E. Starzl; Randall S. Prather; Yifan Dai
Meat products are generally low in omega-3 (n-3) fatty acids, which are beneficial to human health. We describe the generation of cloned pigs that express a humanized Caenorhabditis elegans gene, fat-1, encoding an n-3 fatty acid desaturase. The hfat-1 transgenic pigs produce high levels of n-3 fatty acids from n-6 analogs, and their tissues have a significantly reduced ratio of n-6/n-3 fatty acids (P < 0.001).
Journal of Clinical Investigation | 2008
Christopher S. Rogers; Yanhong Hao; Tatiana Rokhlina; Melissa Samuel; David A. Stoltz; Yuhong Li; Elena Petroff; Daniel W. Vermeer; Amanda C. Kabel; Ziying Yan; Lee D. Spate; David Wax; Clifton N. Murphy; August Rieke; Kristin M. Whitworth; Michael L. Linville; Scott W. Korte; John F. Engelhardt; Michael Welsh; Randall S. Prather
Progress toward understanding the pathogenesis of cystic fibrosis (CF) and developing effective therapies has been hampered by lack of a relevant animal model. CF mice fail to develop the lung and pancreatic disease that cause most of the morbidity and mortality in patients with CF. Pigs may be better animals than mice in which to model human genetic diseases because their anatomy, biochemistry, physiology, size, and genetics are more similar to those of humans. However, to date, gene-targeted mammalian models of human genetic disease have not been reported for any species other than mice. Here we describe the first steps toward the generation of a pig model of CF. We used recombinant adeno-associated virus (rAAV) vectors to deliver genetic constructs targeting the CF transmembrane conductance receptor (CFTR) gene to pig fetal fibroblasts. We generated cells with the CFTR gene either disrupted or containing the most common CF-associated mutation (DeltaF508). These cells were used as nuclear donors for somatic cell nuclear transfer to porcine oocytes. We thereby generated heterozygote male piglets with each mutation. These pigs should be of value in producing new models of CF. In addition, because gene-modified mice often fail to replicate human diseases, this approach could be used to generate models of other human genetic diseases in species other than mice.
Theriogenology | 2003
Randall S. Prather; R.J. Hawley; David B. Carter; Liangxue Lai; J.L. Greenstein
Initial technologies for creating transgenic swine only permitted random integration of the construct. However, by combining the technology for homologous recombination in fetal somatic cells with that of nuclear transfer (NT), it is now possible to create specific modifications to the swine genome. The first such example is that of knocking out a gene that is responsible for hyperacute rejection (HAR) when organs from swine are transferred to primates. Because swine are widely used as models of human diseases, there are opportunities for genetic modification to alter these models or to create additional models of human disease. Unfortunately, some of the offspring resulting from NT have abnormal phenotypes. However, it appears that these abnormal phenotypes are a result of epigenetic modifications and, thus, are not transmitted to the offspring of the clones. Although the technique of producing animals with specific genetic modifications by NT has been achieved, improvements to the NT technique as well as improvements in the culture conditions for somatic cells and the techniques for genetic modification are still needed.
Biology of Reproduction | 2009
Jianguo Zhao; Jason W. Ross; Yanhong Hao; Lee D. Spate; Eric M. Walters; Melissa Samuel; August Rieke; Clifton N. Murphy; Randall S. Prather
The National Institutes of Health (NIH) miniature pig was developed specifically for xenotransplantation and has been extensively used as a large-animal model in many other biomedical experiments. However, the cloning efficiency of this pig is very low (<0.2%), and this has been an obstacle to the promising application of these inbred swine genetics for biomedical research. It has been demonstrated that increased histone acetylation in somatic cell nuclear transfer (SCNT) embryos, by applying a histone deacetylase (HDAC) inhibitor such as trichostatin A (TSA), significantly enhances the developmental competence in several species. However, some researchers also reported that TSA treatment had various detrimental effects on the in vitro and in vivo development of the SCNT embryos. Herein, we report that treatment with 500 nM 6-(1,3-dioxo-1H, 3H-benzo[de]isoquinolin-2-yl)-hexanoic acid hydroxyamide (termed scriptaid), a novel HDAC inhibitor, significantly enhanced the development of SCNT embryos to the blastocyst stage when NIH inbred fetal fibroblast cells (FFCs) were used as donors compared with the untreated group (21% vs. 9%, P < 0.05). Scriptaid treatment resulted in eight pregnancies from 10 embryo transfers (ETs) and 14 healthy NIH miniature pigs from eight litters, while no viable piglets (only three mummies) were obtained from nine ETs in the untreated group. Thus, scriptaid dramatically increased the cloning efficiency when using inbred genetics from 0.0% to 1.3%. In contrast, scriptaid treatment decreased the blastocyst rate in in vitro fertilization embryos (from 37% to 26%, P < 0.05). In conclusion, the extremely low cloning efficiency in the NIH miniature pig may be caused by its inbred genetic background and can be improved by alteration of genomic histone acetylation patterns.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2008
Christopher S. Rogers; William M. Abraham; Kim A. Brogden; John F. Engelhardt; John T. Fisher; Paul B. McCray; Geoffrey McLennan; David K. Meyerholz; Eman Namati; Lynda S. Ostedgaard; Randall S. Prather; Juan R. Sabater; David A. Stoltz; Joseph Zabner; Michael J. Welsh
Airway disease currently causes most of the morbidity and mortality in patients with cystic fibrosis (CF). However, understanding the pathogenesis of CF lung disease and developing novel therapeutic strategies have been hampered by the limitations of current models. Although the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) has been targeted in mice, CF mice fail to develop lung or pancreatic disease like that in humans. In many respects, the anatomy, biochemistry, physiology, size, and genetics of pigs resemble those of humans. Thus pigs with a targeted CFTR gene might provide a good model for CF. Here, we review aspects of porcine airways and lung that are relevant to CF.
Biology of Reproduction | 2014
Kristin M. Whitworth; Kiho Lee; Joshua A. Benne; Benjamin P. Beaton; Lee D. Spate; Stephanie L. Murphy; Melissa Samuel; Jiude Mao; Chad O'Gorman; Eric M. Walters; Clifton N. Murphy; John P. Driver; Alan Mileham; David G. McLaren; Kevin D. Wells; Randall S. Prather
ABSTRACT Targeted modification of the pig genome can be challenging. Recent applications of the CRISPR/Cas9 system hold promise for improving the efficacy of genome editing. When a designed CRISPR/Cas9 system targeting CD163 or CD1D was introduced into somatic cells, it was highly efficient in inducing mutations. When these mutated cells were used with somatic cell nuclear transfer, offspring with these modifications were created. When the CRISPR/Cas9 system was delivered into in vitro produced presumptive porcine zygotes, the system was effective in creating mutations in eGFP, CD163, and CD1D (100% targeting efficiency in blastocyst stage embryos); however, it also presented some embryo toxicity. We could also induce deletions in CD163 or CD1D by introducing two types of CRISPRs with Cas9. The system could also disrupt two genes, CD163 and eGFP, simultaneously when two CRISPRs targeting two genes with Cas9 were delivered into zygotes. Direct injection of CRISPR/Cas9 targeting CD163 or CD1D into zygotes resulted in piglets that have mutations on both alleles with only one CD1D pig having a mosaic genotype. We show here that the CRISPR/Cas9 system can be used by two methods. The system can be used to modify somatic cells followed by somatic cell nuclear transfer. System components can also be used in in vitro produced zygotes to generate pigs with specific genetic modifications.
Theriogenology | 2000
Lalantha R. Abeydeera; Wei-Hua Wang; T.C. Cantley; August Rieke; Clifton N. Murphy; Randall S. Prather; Billy N. Day
This study examined the ability of epidermal growth factor (EGF) to improve the developmental competence of pig oocytes matured in a protein-free (PF) in vitro maturation (IVM) system. Oocyte maturation was done in one of three media: 1. PF-TCM: tissue culture medium (TCM) 199 + 0.1% polyvinylalcohol (PVA); 2. PF-TCM+EGF: PF-TCM + 10 ng/ml EGF; and 3. +ve CONT: North Carolina State University (NCSU) 23 medium + 10% porcine follicular fluid. All media contained 0.57 mM cysteine. Hormonal supplements, 0.5 microg/mL LH and 0.5 microg/mL FSH, were present only for the first half (20 to 22 h) of the culture period. After maturation, oocytes were co-incubated with frozen-thawed spermatozoa for 5 to 6 h and transferred to embryo culture medium, NCSU 23 containing 0.4% BSA, for 144 h. In Experiment 1, differences in cumulus expansion were observed for oocytes matured in +ve CONT (Category 4), PF-TCM (Category 2) and PF-TCM+EGF (Category 3). However, no significant differences in nuclear maturation to metaphase II stage were observed. In Experiment 2, no differences in fertilization parameters were observed. Significant (P < 0.01) differences in cleavage rates were observed among the three media for a proportion of the oocytes matured (52, 60 and 69% in PF-TCM, PF-TCM+EGF, and +ve CONT, respectively). Oocytes matured in PF-TCM showed the lowest (P < 0.01) blastocyst development (22%). However, the same rate of blastocyst development was obtained for +ve CONT (37%) and PF-TCM+EGF (37%). Blastocyst cell numbers were significantly higher when oocytes were matured in the presence of EGF (26 vs. 37 to 41). In Experiment 3, oocytes matured in PF-TCM+EGF had a significantly (P < 0.05) higher intracellular glutathione (GSH) concentration (5.9 vs. 11.4 pmol/oocyte) compared with PF-TCM. Twenty-two of 25 embryo transfer recipients became pregnant (Experiment 4). Four animals returned to estrus in within 60 days. Six pregnant animals slaughtered at 26 to 45 days had 43 fetuses (range: 4 to 12) and the remaining 12 animals farrowed 82 piglets (range: 3 to 12). These results indicate that EGF enhances the developmental competence of pig oocytes matured in a protein-free culture medium which is correlated with higher GSH level in oocytes. Birth of piglets indicate that embryos derived from oocytes matured in the presence of EGF are viable.
Biology of Reproduction | 2002
Kwang-Wook Park; Liangxue Lai; Hee-Tae Cheong; Ryan A. Cabot; Qing-Yuan Sun; Guangming Wu; Edmund B. Rucker; David Durtschi; Aaron Bonk; Melissa Samuel; August Rieke; B.N. Day; Clifton N. Murphy; David B. Carter; Randall S. Prather
Abstract Genetically modified domestic animals have many potential applications ranging from basic research to production agriculture. One of the goals in transgenic animal production schemes is to reliably predict the expression pattern of the foreign gene. Establishing a method to screen genetically modified embryos for transgene expression before transfer to surrogates may improve the likelihood of producing offspring with the desired expression pattern. In order to determine how transgene expression may be regulated in the early embryo, we generated porcine embryos from two distinct genetically modified cell lines by using the nuclear transfer (NT) technique. Both cell lines expressed the enhanced green fluorescent protein (eGFP); the first was a fibroblast cell line derived from the skin of a newborn pig that expressed eGFP, whereas the second was a fetal derived fibroblast cell line into which the eGFP gene was introduced by a retroviral vector. The reconstructed embryos were activated by electrical pulses and cultured in NCSU23. Although the in vitro developmental ability of each group of NT embryos was not different, the eGFP expression pattern was different. All embryos produced from the transduced fetal cell line fluoresced, but only 26% of the embryos generated from the newborn cell line fluoresced, and among those that did express eGFP, more than half had a mosaic expression pattern. This was unexpected because the fetal cell line was not clonally selected, and each cell had potentially different sites of integration. Embryos generated from the newborn cell line were surgically transferred to five surrogate gilts. One gilt delivered four female piglets, all of which expressed eGFP, and all had microsatellites identical to the donor. Here we demonstrate that transgene expression in all the blastomeres of an NT embryo is not uniform. In addition, transgene expression in a genetically manipulated embryo may not be an accurate indicator of expression in the resulting offspring.