Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Randip Kaur is active.

Publication


Featured researches published by Randip Kaur.


International Journal of Pharmaceutics | 2011

Microscopy imaging of liposomes: From coverslips to environmental SEM

Sagida Bibi; Randip Kaur; Malou Henriksen-Lacey; Sarah E. McNeil; Jitinder Wilkhu; Eric Lattmann; Dennis Christensen; Afzal-Ur-Rahman Mohammed; Yvonne Perrie

A plethora of techniques for the imaging of liposomes and other bilayer vesicles are available. However, sample preparation and the technique chosen should be carefully considered in conjunction with the information required. For example, larger vesicles such as multilamellar and giant unilamellar vesicles can be viewed using light microscopy and whilst vesicle confirmation and size prior to additional physical characterisations or more detailed microscopy can be undertaken, the technique is limited in terms of resolution. To consider the options available for visualising liposome-based systems, a wide range of microscopy techniques are described and discussed here: these include light, fluorescence and confocal microscopy and various electron microscopy techniques such as transmission, cryo, freeze fracture and environmental scanning electron microscopy. Their application, advantages and disadvantages are reviewed with regard to their use in analysis of lipid vesicles.


International Journal of Pharmaceutics | 2014

High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization

Elisabeth Kastner; Randip Kaur; Deborah Lowry; Behfar Moghaddam; Alexander Wilkinson; Yvonne Perrie

Microfluidics has recently emerged as a new method of manufacturing liposomes, which allows for reproducible mixing in miliseconds on the nanoliter scale. Here we investigate microfluidics-based manufacturing of liposomes. The aim of these studies was to assess the parameters in a microfluidic process by varying the total flow rate (TFR) and the flow rate ratio (FRR) of the solvent and aqueous phases. Design of experiment and multivariate data analysis were used for increased process understanding and development of predictive and correlative models. High FRR lead to the bottom-up synthesis of liposomes, with a strong correlation with vesicle size, demonstrating the ability to in-process control liposomes size; the resulting liposome size correlated with the FRR in the microfluidics process, with liposomes of 50 nm being reproducibly manufactured. Furthermore, we demonstrate the potential of a high throughput manufacturing of liposomes using microfluidics with a four-fold increase in the volumetric flow rate, maintaining liposome characteristics. The efficacy of these liposomes was demonstrated in transfection studies and was modelled using predictive modeling. Mathematical modelling identified FRR as the key variable in the microfluidic process, with the highest impact on liposome size, polydispersity and transfection efficiency. This study demonstrates microfluidics as a robust and high-throughput method for the scalable and highly reproducible manufacture of size-controlled liposomes. Furthermore, the application of statistically based process control increases understanding and allows for the generation of a design-space for controlled particle characteristics.


PLOS ONE | 2012

Small cationic DDA:TDB liposomes as protein vaccine adjuvants obviate the need for TLR agonists in inducing cellular and humoral responses.

Anita Milicic; Randip Kaur; Arturo Reyes-Sandoval; Choon-Kit Tang; Jared D. Honeycutt; Yvonne Perrie; Adrian V. S. Hill

Most subunit vaccines require adjuvants in order to induce protective immune responses to the targeted pathogen. However, many of the potent immunogenic adjuvants display unacceptable local or systemic reactogenicity. Liposomes are spherical vesicles consisting of single (unilamellar) or multiple (multilamellar) phospholipid bi-layers. The lipid membranes are interleaved with an aqueous buffer, which can be utilised to deliver hydrophilic vaccine components, such as protein antigens or ligands for immune receptors. Liposomes, in particular cationic DDA:TDB vesicles, have been shown in animal models to induce strong humoral responses to the associated antigen without increased reactogenicity, and are currently being tested in Phase I human clinical trials. We explored several modifications of DDA:TDB liposomes - including size, antigen association and addition of TLR agonists – to assess their immunogenic capacity as vaccine adjuvants, using Ovalbumin (OVA) protein as a model protein vaccine. Following triple homologous immunisation, small unilamellar vesicles (SUVs) with no TLR agonists showed a significantly higher capacity for inducing spleen CD8 IFNγ responses against OVA in comparison with the larger multilamellar vesicles (MLVs). Antigen-specific antibody reponses were also higher with SUVs. Addition of the TLR3 and TLR9 agonists significantly increased the adjuvanting capacity of MLVs and OVA-encapsulating dehydration-rehydration vesicles (DRVs), but not of SUVs. Our findings lend further support to the use of liposomes as protein vaccine adjuvants. Importantly, the ability of DDA:TDB SUVs to induce potent CD8 T cell responses without the need for adding immunostimulators would avoid the potential safety risks associated with the clinical use of TLR agonists in vaccines adjuvanted with liposomes.


Human Vaccines & Immunotherapeutics | 2013

A case-study investigating the physicochemical characteristics that dictate the function of a liposomal adjuvant.

Yvonne Perrie; Elisabeth Kastner; Randip Kaur; Alexander Wilkinson; Andrew Ingham

A range of particulate delivery systems have been considered as vaccine adjuvants. Of these systems, liposomes offer a range of advantages including versatility and flexibility in design format and their ability to incorporate a range of immunomodulators and antigens. Here we briefly outline research, from within our laboratories, which focused on the systematic evaluation of cationic liposomes as vaccines adjuvants. Our aim was to identify physicochemical characteristics that correlate with vaccine efficacy, with particular consideration of the interlink between depot-forming action and immune responses. A variety of parameters were investigated and over a range of studies we have confirmed that cationic liposomes, based on dimethyldioctadecylammonium bromide and trehalose 6,6’-dibehenate formed a depot at the injection site, which stimulates recruitment of antigen presenting cells to the injection site and promotes strong humoral and cell-mediated immune responses. Physicochemical factors which promote a strong vaccine depot include the combination of a high cationic charge and electrostatic binding of the antigen to the liposome system and the use of lipids with high transition temperatures, which form rigid bilayer vesicles. Reduction in vesicle size of cationic vesicles did not promote enhanced drainage from the injection site. However, reducing the cationic nature through substitution of the cationic lipid for a neutral lipid, or by masking of the charge using PEGylation, resulted in a reduced depot formation and reduced Th1-type immune responses, while Th2-type responses were less influenced. These studies confirm that the physicochemical characteristics of particulate-based adjuvants play a key role in the modulation of immune responses.


Journal of Pharmaceutical Sciences | 2011

Preparation, Characterisation and Entrapment of a Non-glycosidic Threitol Ceramide into Liposomes for Presentation to Invariant Natural Killer T Cells

Randip Kaur; Ji-Li Chen; Amina Dawoodji; Vincenzo Cerundolo; Yoel R. Garcia-Diaz; Justyna Wojno; Liam R. Cox; Gurdyal S. Besra; Behfar Moghaddam; Yvonne Perrie

Dendritic cells (DCs) are able to present glycolipids to invariant natural killer T (iNKT) cells in vivo. Very few compounds have been found to stimulate iNKT cells, and of these, the best characterised is the glycolipid α-galactosylceramide, which stimulates the production of large quantities of interferon-gamma (IFN-γ) and interleukin-4 (IL-4). However, αGalCer leads to overstimulation of iNKT cells. It has been demonstrated that the αGalCer analogue, threitol ceramide (ThrCer 2), successfully activates iNKT cells and overcomes the problematic iNKT cell activation-induced anergy. In this study, ThrCer 2 has been inserted into the bilayers of liposomes composed of a neutral lipid, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), or dimethyldioctadecylammonium bromide (DDA), a cationic lipid. Incorporation efficiencies of ThrCer within the liposomes was 96% for DSPC liposomes and 80% for DDA liposomes, with the vesicle size (large multilamellar vs. small unilamellar vesicles) making no significant difference. Langmuir-Blodgett studies suggest that both DSPC and DDA stack within the monolayer co-operatively with the ThrCer molecules with no condensing effect. In terms of cellular responses, IFN-γ secretion was higher for cells treated with small DDA liposomes compared with the other liposome formulations, suggesting that ThrCer encapsulation in this liposome formulation resulted in a higher uptake by DCs.


Current Drug Delivery | 2013

Developing Solid Particulate Vaccine Adjuvants: Surface Bound Antigen Favours a Humoural Response, whereas Entrapped Antigen Shows a Tendency for Cell Mediated Immunity

Daniel Kirby; Randip Kaur; Else Marie Agger; Peter Andersen; Vincent W. Bramwell; Yvonne Perrie

This present study compares the efficacy of microsphere formulations, and their method of antigen presentation, for the delivery of the TB sub-unit vaccine antigen, Ag85B-ESAT-6. Microspheres based on poly(lactide-coglycolide) (PLGA) and chitosan incorporating dimethyldioctadecylammonium bromide (DDA) were prepared by either the w/o/w double emulsion method (entrapped antigen) or the o/w single emulsion method (surface bound antigen), and characterised for their physico-chemical properties and their ability to promote an immune response to Ag85B-ESAT-6. The method of preparation, and hence method of antigen association, had a pronounced effect on the type of immune response achieved from the microsphere formulations, with surface bound antigen favouring a humoural response, whereas entrapped antigen favoured a cellular response.


Mucosal Immunology | 2016

Human rhinovirus-induced inflammatory responses are inhibited by phosphatidylserine containing liposomes

Clare A. Stokes; Randip Kaur; Michael R. Edwards; Madhav Mondhe; D. Robinson; Elizabeth C. Prestwich; R.D. Hume; C. A. Marshall; Yvonne Perrie; Valerie Bridget O'Donnell; John L. Harwood; Ian Sabroe; Lisa C. Parker

Human rhinovirus (HRV) infections are major contributors to the healthcare burden associated with acute exacerbations of chronic airway disease, such as chronic obstructive pulmonary disease and asthma. Cellular responses to HRV are mediated through pattern recognition receptors that may in part signal from membrane microdomains. We previously found Toll-like receptor signaling is reduced, by targeting membrane microdomains with a specific liposomal phosphatidylserine species, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (SAPS). Here we explored the ability of this approach to target a clinically important pathogen. We determined the biochemical and biophysical properties and stability of SAPS liposomes and studied their ability to modulate rhinovirus-induced inflammation, measured by cytokine production, and rhinovirus replication in both immortalized and normal primary bronchial epithelial cells. SAPS liposomes rapidly partitioned throughout the plasma membrane and internal cellular membranes of epithelial cells. Uptake of liposomes did not cause cell death, but was associated with markedly reduced inflammatory responses to rhinovirus, at the expense of only modest non-significant increases in viral replication, and without impairment of interferon receptor signaling. Thus using liposomes of phosphatidylserine to target membrane microdomains is a feasible mechanism for modulating rhinovirus-induced signaling, and potentially a prototypic new therapy for viral-mediated inflammation.


Archive | 2013

Formulation and Characterisation of PLGA Microspheres as Vaccine Adjuvants

Daniel Kirby; Randip Kaur; Yvonne Perrie

There appear to be several factors that confirm the viability of polymeric microspheres as vaccine delivery vehicles, including the ability to enhance targeting of antigen-presenting cells, the potential for controlled, sustained release of antigen-thereby potentially eliminating the need for multiple vaccination doses-as well as the ability of the polymer matrix to not only facilitate more efficient delivery by acting as a shield from the hostile external environment, but also the potential to reduce adverse reactions and abrogate problems caused by the vaccine strain in immunocompromised individuals. In addition, microspheres offer great variability in terms of manufacturing processes, constituents (including additional adjuvants), physico-chemical properties and immunological efficacy.


MAGNETIC RESONANCE IN POROUS MEDIA: Proceedings of the 9th International Bologna#N#Conference on Magnetic Resonance in Porous Media (MRPM9), including 8th Colloquium on#N#Mobile Magnetic Resonance (CMMR8) | 2008

MRI pressure and stress measurement in novel homogeneous soft solids

Robert H. Morris; Martin Bencsik; Nikolaus Nestle; Randip Kaur; Petrik Galvosas; Yvonne Perrie

This paper presents MRI measurements of a novel semi solid MR contrast agent to pressure. The agent is comprised of potassium chloride cross linked carageenan gum at a concentration of 2% w/v, with micron size lipid coated bubbles of air at a concentration of 3% v/v. The choice for an optimum suspending medium, the methods of production and the preliminary MRI results are presented herein. The carageenan gum is shown to be ideally elastic for compressions relating to volume changes less than 15%, in contrast to the inelastic gellan gum also tested. Although slightly lower than that of gellan gum, carageenan has a water diffusion coefficient of 1.72×10-9 m2.s-1 indicating its suitability to this purpose. RARE imaging is performed whilst simultaneously compressing test and control samples and a maximum sensitivity of 1.6% MR signal change per % volume change is found which is shown to be independent of proton density variations due to the presence of microbubbles and compression. This contrast agent could prove useful for numerous applications, and particularly in chemical engineering. More generally the method allows the user to non-invasively image with MRI any process that causes, within the solid, local changes either in bubble size or bubble shape.


Journal of Controlled Release | 2012

Pegylation of DDA:TDB liposomal adjuvants reduces the vaccine depot effect and alters the Th1/Th2 immune responses

Randip Kaur; Vincent W. Bramwell; Daniel Kirby; Yvonne Perrie

Collaboration


Dive into the Randip Kaur's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Bencsik

Nottingham Trent University

View shared research outputs
Top Co-Authors

Avatar

Robert H. Morris

Nottingham Trent University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Rades

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge