Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Randy C. Ploetz is active.

Publication


Featured researches published by Randy C. Ploetz.


Fungal Genetics and Biology | 2009

A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex

Kerry O'Donnell; Cécile Gueidan; Stacy Sink; Peter R. Johnston; Pedro W. Crous; Anthony E. Glenn; Ron Riley; Nicholas C. Zitomer; Patrick Colyer; Cees Waalwijk; Theo van der Lee; Antonio Moretti; Seogchan Kang; Hye Seon Kim; David M. Geiser; Jean H. Juba; R. P. Baayen; M. G. Cromey; Sean Bithell; Deanna A. Sutton; Kerstin Skovgaard; Randy C. Ploetz; H. Corby Kistler; Monica L. Elliott; Mike Davis; Brice A. J. Sarver

We constructed a two-locus database, comprising partial translation elongation factor (EF-1alpha) gene sequences and nearly full-length sequences of the nuclear ribosomal intergenic spacer region (IGS rDNA) for 850 isolates spanning the phylogenetic breadth of the Fusarium oxysporum species complex (FOSC). Of the 850 isolates typed, 101 EF-1alpha, 203 IGS rDNA, and 256 two-locus sequence types (STs) were differentiated. Analysis of the combined dataset suggests that two-thirds of the STs might be associated with a single host plant. This analysis also revealed that the 26 STs associated with human mycoses were genetically diverse, including several which appear to be nosocomial in origin. A congruence analysis, comparing partial EF-1alpha and IGS rDNA bootstrap consensus, identified a significant number of conflicting relationships dispersed throughout the bipartitions, suggesting that some of the IGS rDNA sequences may be non-orthologous. We also evaluated enniatin, fumonisin and moniliformin mycotoxin production in vitro within a phylogenetic framework.


Phytopathology | 2006

Fusarium Wilt of Banana Is Caused by Several Pathogens Referred to as Fusarium oxysporum f. sp. cubense

Randy C. Ploetz

ABSTRACT Fusarium wilt of banana (also known as Panama disease) is caused by Fusarium oxysporum f. sp. cubense. Where susceptible cultivars are grown, management is limited to the use of pathogen-free planting stock and clean soils. Resistant genotypes exist for some applications, but resistance is still needed in other situations. Progress has been made with this recalcitrant crop by traditional and nontraditional improvement programs. The disease was first reported in Australia in 1876, but did the greatest damage in export plantations in the western tropics before 1960. A new variant, tropical race 4, threatens the trades that are now based on Cavendish cultivars, and other locally important types such as the plantains. Phylogenetic studies indicate that F. oxysporum f. sp. cubense had several independent evolutionary origins. The significance of these results and the future impact of this disease are discussed.


Phytopathology | 1997

Fusarium oxysporum f. sp. cubense Consists of a Small Number of Divergent and Globally Distributed Clonal Lineages

R. L. Koenig; Randy C. Ploetz; H. C. Kistler

ABSTRACT A worldwide collection of Fusarium oxysporum f. sp. cubense was analyzed using anonymous, single-copy, restriction fragment length polymorphism (RFLP) loci. Several lines of evidence indicated that this pathogen has a clonal population structure. Of the 165 isolates examined, only 72 RFLP haplotypes were identified, and nearly half the isolates were represented by the five most common haplotypes. Individuals with identical haplotypes were geographically dispersed, and clone-corrected tests of gametic disequilibrium indicated significant nonrandom association among pairs of alleles for 34 of 36 loci tested. Parsimony analysis divided haplotypes into two major branches (bootstrap value = 99%) that together contained eight clades supported by significant bootstrap values. With the exception of two isolates, all isolates within a vegetative compatibility group were in the same clade and clonal lineage. Clonal lineages were defined by isolates having coefficients of similarity between 0.94 and 1.00. Ten clonal lineages were identified, and the two largest lineages had pantropical distribution. Minor lineages were found only in limited geographical regions. Isolates composing one lineage (FOC VII) may represent either an ancient genetic exchange between individuals in the two largest lineages or an ancestral group. The two largest lineages (FOC I and FOC II) and a lineage from East Africa (FOC V) are genetically distinct; each may have acquired the ability to be pathogenic on banana independently.


Phytopathology | 2013

One fungus, one name

David M. Geiser; Takayuki Aoki; Charles W. Bacon; Scott E. Baker; Madan K. Bhattacharyya; Mary E. Brandt; Daren W. Brown; L. W. Burgess; S. Chulze; Jeffrey J. Coleman; J. C. Correll; Sarah F. Covert; Pedro W. Crous; Christina A. Cuomo; G. Sybren de Hoog; Antonio Di Pietro; Wade H. Elmer; Lynn Epstein; Rasmus John Normand Frandsen; Stanley Freeman; Tatiana Gagkaeva; Anthony E. Glenn; Thomas R. Gordon; Nancy F. Gregory; Kim E. Hammond-Kosack; Linda E. Hanson; María del Mar Jiménez-Gasco; Seogchan Kang; H. Corby Kistler; Gretchen A. Kuldau

In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation to use other genus names, including teleomorphs, for species nested within this clade, and preserve the application of the name Fusarium in the way it has been used for almost a century. Due to recent changes in the International Code of Nomenclature for algae, fungi, and plants, this is an urgent matter that requires community attention. The alternative is to break the longstanding concept of Fusarium into nine or more genera, and remove important taxa such as those in the F. solani species complex from the genus, a move we believe is unnecessary. Here we present taxonomic and nomenclatural proposals that will preserve established research connections and facilitate communication within and between research communities, and at the same time support strong scientific principles and good taxonomic practice.


Phytopathology | 2013

One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use.

David M. Geiser; Takayuki Aoki; Charles W. Bacon; Scott E. Baker; Madan K. Bhattacharyya; Mary E. Brandt; Daren W. Brown; L. W. Burgess; S. Chulze; Jeffrey J. Coleman; J. C. Correll; Sarah F. Covert; Pedro W. Crous; Christina A. Cuomo; G. Sybren de Hoog; Antonio Di Pietro; Wade H. Elmer; Lynn Epstein; Rasmus John Normand Frandsen; Stanley Freeman; Tatiana Gagkaeva; Anthony E. Glenn; Thomas R. Gordon; Nancy F. Gregory; Kim E. Hammond-Kosack; Linda E. Hanson; María del Mar Jiménez-Gasco; Seogchan Kang; H. Corby Kistler; Gretchen A. Kuldau

In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation to use other genus names, including teleomorphs, for species nested within this clade, and preserve the application of the name Fusarium in the way it has been used for almost a century. Due to recent changes in the International Code of Nomenclature for algae, fungi, and plants, this is an urgent matter that requires community attention. The alternative is to break the longstanding concept of Fusarium into nine or more genera, and remove important taxa such as those in the F. solani species complex from the genus, a move we believe is unnecessary. Here we present taxonomic and nomenclatural proposals that will preserve established research connections and facilitate communication within and between research communities, and at the same time support strong scientific principles and good taxonomic practice.


Diseases of tropical fruit crops. | 2003

Diseases of tropical fruit crops.

Randy C. Ploetz

Annona, avocado banana, breadfruit and jackfruit carambola, citrus, coconut date, durian fig, guava, kiwifruit loquat, lychee, longan and rambutan, mango mangosteen papaya, passionfruit, persimmon pineapple, pomegranate, sapodilla. (Part contents).


Phytopathology | 1998

Systematic Numbering of Vegetative Compatibility Groups in the Plant Pathogenic Fungus Fusarium oxysporum

H. C. Kistler; Claude Alabouvette; R. P. Baayen; S. Bentley; D. Brayford; A. Coddington; J. C. Correll; Marie-Josée Daboussi; K. Elias; D. Fernandez; Thomas R. Gordon; T. Katan; H. G. Kim; John F. Leslie; R. D. Martyn; Quirico Migheli; N. Y. Moore; Kerry O'Donnell; Randy C. Ploetz; M. A. Rutherford; Brett A. Summerell; Cees Waalwijk; S. Woo

First author: Plant Pathology Department, University of Florida, Gainesville 32611-0680; second author: Laboratoire de Recherches sur la Flore Pathogene du Sol, INRA, 17 rue Sully, B.V. 154


Phytopathology | 2006

Mango Malformation Disease and the Associated Fusarium Species

W. F. O. Marasas; Randy C. Ploetz; Michael J. Wingfield; Brenda D. Wingfield; Emma Theodora Steenkamp

ABSTRACT Mango malformation disease (MMD) occurs in Asia, Africa, and the Americas and was first reported in India in 1891. The vegetative form of MMD was first reproduced in 1966 with Fusarium moniliforme and the floral form with isolates of F. moniliforme var. subglutinans from both vegetative shoots and floral tissue. The fungi were subsequently recognized as F. subglutinans. In 2002, a new species, F. mangiferae, was established based on nuclear and mitochondrial DNA sequences; it included strains of F. subglutinans from Egypt, Florida, Israel, Malaysia, and South Africa, some of which had been shown to cause MMD by artificial inoculation. At least three additional taxa have been associated with MMD: F. sterilihyphosum from Brazil and South Africa, and Fusarium sp. nov. and F. proliferatum (teleomorph: Gibberella intermedia) from Malaysia. To date, Kochs postulates have not been completed with them. In the future, gene sequencing will be essential to identify the Fusarium spp. that are associated with MMD. Work remains to be done on the morphology, sexual compatibility, pathogenicity, and toxigenicity of these taxa.


Fungal Genetics and Biology | 2013

An inordinate fondness for Fusarium: Phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus Euwallacea on avocado and other plant hosts

Matthew T. Kasson; Kerry O’Donnell; Alejandro P. Rooney; Stacy Sink; Randy C. Ploetz; Jill N. Ploetz; Joshua L. Konkol; Daniel Carrillo; Stanley Freeman; Zvi Mendel; Jason A. Smith; Adam Black; Jiri Hulcr; Craig Bateman; Kristyna Stefkova; Paul R. Campbell; Andrew D. W. Geering; E. K. Dann; Akif Eskalen; Keerthi Mohotti; Dylan P. G. Short; Takayuki Aoki; Kristi Fenstermacher; Donald D. Davis; David M. Geiser

Ambrosia beetle fungiculture represents one of the most ecologically and evolutionarily successful symbioses, as evidenced by the 11 independent origins and 3500 species of ambrosia beetles. Here we document the evolution of a clade within Fusarium associated with ambrosia beetles in the genus Euwallacea (Coleoptera: Scolytinae). Ambrosia Fusarium Clade (AFC) symbionts are unusual in that some are plant pathogens that cause significant damage in naïve natural and cultivated ecosystems, and currently threaten avocado production in the United States, Israel and Australia. Most AFC fusaria produce unusual clavate macroconidia that serve as a putative food source for their insect mutualists. AFC symbionts were abundant in the heads of four Euwallacea spp., which suggests that they are transported within and from the natal gallery in mandibular mycangia. In a four-locus phylogenetic analysis, the AFC was resolved in a strongly supported monophyletic group within the previously described Clade 3 of the Fusarium solani species complex (FSSC). Divergence-time estimates place the origin of the AFC in the early Miocene ∼21.2 Mya, which coincides with the hypothesized adaptive radiation of the Xyleborini. Two strongly supported clades within the AFC (Clades A and B) were identified that include nine species lineages associated with ambrosia beetles, eight with Euwallacea spp. and one reportedly with Xyleborus ferrugineus, and two lineages with no known beetle association. More derived lineages within the AFC showed fixation of the clavate (club-shaped) macroconidial trait, while basal lineages showed a mix of clavate and more typical fusiform macroconidia. AFC lineages consisted mostly of genetically identical individuals associated with specific insect hosts in defined geographic locations, with at least three interspecific hybridization events inferred based on discordant placement in individual gene genealogies and detection of recombinant loci. Overall, these data are consistent with a strong evolutionary trend toward obligate symbiosis coupled with secondary contact and interspecific hybridization.


Infection, Genetics and Evolution | 2011

Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex

Gerda Fourie; Emma Theodora Steenkamp; Randy C. Ploetz; Thomas R. Gordon; Adrienne Viljoen

Fusarium oxysporum is an asexual fungal species that includes human and animal pathogens and a diverse range of nonpathogens. Pathogenic and nonpathogenic strains of this species can be distinguished from each other with pathogenicity tests, but not with morphological analysis or sexual compatibility studies. Substantial genetic diversity among isolates has led to the realization that F. oxysporum represents a complex of cryptic species. F. oxysporum f. sp cubense (Foc), causal agent of Fusarium wilt of banana, is one of the more than 150 plant pathogenic forms of F. oxysporum. Multi-gene phylogenetic studies of Foc revealed at least eight phylogenetic lineages, a finding that was supported by random amplified polymorphic DNAs, restriction fragment length polymorphisms and amplified fragment length polymorphisms. Most of these lineages consist of isolates in closely related vegetative compatibility groups, some of which possess opposite mating type alleles, MAT-1 and MAT-2; thus, the evolutionary history of this fungus may have included recent sexual reproduction. The ability to cause disease on all or some of the current race differential cultivars has evolved convergently in the taxon, as members of some races appear in different phylogenetic lineages. Therefore, various factors including co-evolution the plant host and horizontal gene transfer are thought to have shaped the evolutionary history of Foc. This review discusses the evolution of Foc as a model formae specialis in F. oxysporum in relation to recent research findings involving DNA-based studies.

Collaboration


Dive into the Randy C. Ploetz's collaboration.

Researchain Logo
Decentralizing Knowledge