Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Randy J. Legerski is active.

Publication


Featured researches published by Randy J. Legerski.


Cell | 1995

The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH

Karla A. Henning; Lei Li; Narayan Iyer; Lisa D. McDaniel; Michael S. Reagan; Randy J. Legerski; Roger A. Schultz; Miria Stefanini; Alan R. Lehmann; Lynne V. Mayne; Errol C. Friedberg

The hereditary disease Cockayne syndrome (CS) is characterized by a complex clinical phenotype. CS cells are abnormally sensitive to ultraviolet radiation and are defective in the repair of transcriptionally active genes. The cloned CSB gene encodes a member of a protein family that includes the yeast Snf2 protein, a component of the transcriptional regulator Swi/Snf. We report the cloning of the CSA cDNA, which can encode a WD repeat protein. Mutations in the cDNA have been identified in CS-A cell lines. CSA protein interacts with CSB protein and with p44 protein, a subunit of the human RNA polymerase II transcription factor IIH. These observations suggest that the products of the CSA and CSB genes are involved in transcription.


Molecular and Cellular Biology | 1995

An interaction between the DNA repair factor XPA and replication protein A appears essential for nucleotide excision repair.

Lei Li; Xiaoyan Lu; Carolyn A. Peterson; Randy J. Legerski

Replication protein A (RPA) is required for simian virus 40-directed DNA replication in vitro and for nucleotide excision repair (NER). Here we report that RPA and the human repair protein XPA specifically interact both in vitro and in vivo. Mapping of the RPA-interactive domains in XPA revealed that both of the largest subunits of RPA, RPA-70 and RPA-34, interact with XPA at distinct sites. A domain involved in mediating the interaction with RPA-70 was located between XPA residues 153 and 176. Deletion of highly conserved motifs within this region identified two mutants that were deficient in binding RPA in vitro and highly defective in NER both in vitro and in vivo. A second domain mediating the interaction with RPA-34 was identified within the first 58 residues in XPA. Deletion of this region, however, only moderately affects the complementing activity of XPA in vivo. Finally, the XPA-RPA complex is shown to have a greater affinity for damaged DNA than XPA alone. Taken together, these results indicate that the interaction between XPA and RPA is required for NER but that only the interaction with RPA-70 is essential.


Molecular and Cellular Biology | 2001

Involvement of Nucleotide Excision Repair in a Recombination-Independent and Error-Prone Pathway of DNA Interstrand Cross-Link Repair

Xin Wang; Carolyn A. Peterson; Huyong Zheng; Rodney S. Nairn; Randy J. Legerski; Lei Li

ABSTRACT DNA interstrand cross-links (ICLs) block the strand separation necessary for essential DNA functions such as transcription and replication and, hence, represent an important class of DNA lesion. Since both strands of the double helix are affected in cross-linked DNA, it is likely that conservative recombination using undamaged homologous regions as a donor may be required to repair ICLs in an error-free manner. However, in Escherichia coli and yeast, recombination-independent mechanisms of ICL repair have been identified in addition to recombinational repair pathways. To study the repair mechanisms of interstrand cross-links in mammalian cells, we developed an in vivo reactivation assay to examine the removal of interstrand cross-links in cultured cells. A site-specific psoralen cross-link was placed between the promoter and the coding region to inactivate the expression of green fluorescent protein or luciferase genes from reporter plasmids. By monitoring the reactivation of the reporter gene, we showed that a single defined psoralen cross-link was removed in repair-proficient cells in the absence of undamaged homologous sequences, suggesting the existence of an ICL repair pathway that is independent of homologous recombination. Mutant cell lines deficient in the nucleotide excision repair pathway were examined and found to be highly defective in the recombination-independent repair of ICLs, while mutants deficient in homologous recombination were found to be proficient. Mutation analysis of plasmids recovered from transfected cells showed frequent base substitutions at or near positions opposing a cross-linked thymidine residue. Based on these results, we suggest a distinct pathway for DNA interstrand cross-link repair involving nucleotide excision repair and a putative lesion bypass mechanism.


Molecular and Cellular Biology | 2003

Nucleotide Excision Repair- and Polymerase η-Mediated Error-Prone Removal of Mitomycin C Interstrand Cross-Links

Huyong Zheng; Xin Wang; Amy J. Warren; Randy J. Legerski; Rodney S. Nairn; Joshua W. Hamilton; Lei Li

ABSTRACT Interstrand cross-links (ICLs) make up a unique class of DNA lesions in which both strands of the double helix are covalently joined, precluding strand opening during replication and transcription. The repair of DNA ICLs has become a focus of study since ICLs are recognized as the main cytotoxic lesion inflicted by an array of alkylating compounds used in cancer treatment. As is the case for double-strand breaks, a damage-free homologous copy is essential for the removal of ICLs in an error-free manner. However, recombination-independent mechanisms may exist to remove ICLs in an error-prone fashion. We have developed an in vivo reactivation assay that can be used to examine the removal of site-specific mitomycin C-mediated ICLs in mammalian cells. We found that the removal of the ICL from the reporter substrate could take place in the absence of undamaged homologous sequences in repair-proficient cells, suggesting a cross-link repair mechanism that is independent of homologous recombination. Systematic analysis of nucleotide excision repair mutants demonstrated the involvement of transcription-coupled nucleotide excision repair and a partial requirement for the lesion bypass DNA polymerase η encoded by the human POLH gene. From these observations, we propose the existence of a recombination-independent and mutagenic repair pathway for the removal of ICLs in mammalian cells.


Molecular and Cellular Biology | 1995

Mutations in XPA that prevent association with ERCC1 are defective in nucleotide excision repair.

Lei Li; Carolyn A. Peterson; Xiaoyan Lu; Randy J. Legerski

The human repair proteins XPA and ERCC1 have been shown to be absolutely required for the incision step of nucleotide excision repair, and recently we identified an interaction between these two proteins both in vivo and in vitro (L. Li, S. J. Elledge, C. A. Peterson, E. S. Bales, and R. J. Legerski, Proc. Natl. Acad. Sci. USA 91:5012-5016, 1994). In this report, we demonstrate the functional relevance of this interaction. The ERCC1-binding domain on XPA was previously mapped to a region containing two highly conserved XPA sequences, Gly-72 to Phe-75 and Glu-78 to Glu-84, which are termed the G and E motifs, respectively. Site-specific mutagenesis was used to independently delete these motifs and create two XPA mutants referred to as delta G and delta E. In vitro, the binding of ERCC1 to delta E was reduced by approximately 70%, and binding to delta G was undetectable; furthermore, both mutants failed to complement XPA cell extracts in an in vitro DNA repair synthesis assay. In vivo, the delta E mutant exhibited an intermediate level of complementation of XPA cells and the delta G mutant exhibited little or no complementation. In addition, the delta G mutant inhibited repair synthesis in wild-type cell extracts, indicating that it is a dominant negative mutant. The delta E and delta G mutations, however, did not affect preferential binding of XPA to damaged DNA. These results suggest that the association between XPA and ERCC1 is a required step in the nucleotide excision repair pathway and that the probable role of the interaction is to recruit the ERCC1 incision complex to the damage site. Finally, the affinity of the XPA-ERCC1 complex was found to increase as a function of salt concentration, indicating a hydrophobic interaction; the half-life of the complex was determined to be approximately 90 min.


Molecular and Cellular Biology | 2004

Artemis is a phosphorylation target of ATM and ATR and is involved in the G2/M DNA damage checkpoint response.

Xiaoshan Zhang; Janice Succi; Zhaohui Feng; Sheela Prithivirajsingh; Michael D. Story; Randy J. Legerski

ABSTRACT Mutations in Artemis in both humans and mice result in severe combined immunodeficiency due to a defect in V(D)J recombination. In addition, Artemis mutants are radiosensitive and chromosomally unstable, which has been attributed to a defect in nonhomologous end joining (NHEJ). We show here, however, that Artemis-depleted cell extracts are not defective in NHEJ and that Artemis-deficient cells have normal repair kinetics of double-strand breaks after exposure to ionizing radiation (IR). Artemis is shown, however, to interact with known cell cycle checkpoint proteins and to be a phosphorylation target of the checkpoint kinase ATM or ATR after exposure of cells to IR or UV irradiation, respectively. Consistent with these findings, our results also show that Artemis is required for the maintenance of a normal DNA damage-induced G2/M cell cycle arrest. Artemis does not appear, however, to act either upstream or downstream of checkpoint kinase Chk1 or Chk2. These results define Artemis as having a checkpoint function and suggest that the radiosensitivity and chromosomal instability of Artemis-deficient cells may be due to defects in cell cycle responses after DNA damage.


Journal of Biological Chemistry | 2005

The Pso4 mRNA Splicing and DNA Repair Complex Interacts with WRN for Processing of DNA Interstrand Cross-links

Nianxiang Zhang; Ramandeep Kaur; Xiaoyan Lu; Xi Shen; Lei Li; Randy J. Legerski

DNA interstrand cross-links (ICLs) are perhaps the most formidable lesion encountered by the cellular DNA repair machinery, and the elucidation of the process by which they are removed in eukaryotic cells has proved a daunting task. In particular, the early stages of adduct recognition and uncoupling of the cross-link have remained elusive principally because genetic studies have not been highly revealing. We have developed a biochemical assay in which processing of a DNA substrate containing a site-specific psoralen ICL can be monitored in vitro. Using this assay we have shown previously that the mismatch repair factor MutSβ, the nucleotide excision repair heterodimer Ercc1-Xpf, and the replication proteins RPA and PCNA are involved in an early stage of psoralen ICL processing. Here, we report the identification of two additional factors required in the ICL repair process, a previously characterized pre-mRNA splicing complex composed of Pso4/Prp19, Cdc5L, Plrg1, and Spf27 (Pso4 complex), and WRN the protein deficient in Werner syndrome. Analysis of the WRN protein indicates that its DNA helicase function, but not its exonuclease activity, is required for ICL processing in vitro. In addition, we show that WRN and the Pso4 complex interact through a direct physical association between WRN and Cdc5L. A putative model for uncoupling of ICLs in mammalian cells is presented.


EMBO Reports | 2005

Mismatch repair participates in error-free processing of DNA interstrand crosslinks in human cells

Qi Wu; Laura A. Christensen; Randy J. Legerski; Karen M. Vasquez

DNA interstrand crosslinks (ICLs) present formidable blocks to DNA metabolic processes and must be repaired for cell survival. ICLs are induced in DNA by intercalating compounds such as the widely used therapeutic agent psoralen. In bacteria, both nucleotide excision repair (NER) and homologous recombination are required for the repair of ICLs. The processing of ICLs in mammalian cells is not clearly understood. However, it is known that processing can occur by NER, which for psoralen ICLs can be an error‐generating process conducive to mutagenesis. We show here that another repair pathway, mismatch repair (MMR), is also involved in eliminating psoralen ICLs in human cells. MMR deficiency renders cells hypersensitive to psoralen ICLs without diminishing their mutagenic potential, suggesting that MMR does not contribute to error‐generating repair, and that MMR may represent a relatively error‐free mechanism for processing these lesions in human cells. Thus, enhancement of MMR relative to NER may reduce the mutagenesis caused by DNA ICLs in humans.


Molecular and Cellular Biology | 2002

hMutSβ is required for the recognition and uncoupling of psoralen interstrand cross-links in vitro

Nianxiang Zhang; Xiaoyan Lu; Xiaoshan Zhang; Carolyn A. Peterson; Randy J. Legerski

ABSTRACT The removal of interstrand cross-links (ICLs) from DNA in higher eucaryotes is not well understood. Here, we show that processing of psoralen ICLs in mammalian cell extracts is dependent upon the mismatch repair complex hMutSβ but is not dependent upon the hMutSα complex or hMlh1. The processing of psoralen ICLs is also dependent upon the nucleotide excision repair proteins Ercc1 and Xpf but not upon other components of the excision stage of this pathway or upon Fanconi anemia proteins. Products formed during the in vitro reaction indicated that the ICL has been removed or uncoupled from the cross-linked substrate in the mammalian cell extracts. Finally, the hMutSβ complex is shown to specifically bind to psoralen ICLs, and this binding is stimulated by the addition of PCNA. Thus, a novel pathway for processing ICLs has been identified in mammalian cells which involves components of the mismatch repair and nucleotide excision repair pathways.


Cancer Chemotherapy and Pharmacology | 1996

Nucleotide excision repair genes as determinants of cellular sensitivity to cyclophosphamide analogs.

Borje S. Andersson; Tara Sadeghi; Michael J. Siciliano; Randy J. Legerski; David Murray

Abstract The objective of this study was to determine the relative importance of the first six complementation groups of the nucleotide excision repair cross-complementing genes (ERCC1–ERCC6) and the first complementation group of the X-ray repair cross-complementing genes (XRCC1), in the repair of DNA damage induced by the in vitro active cyclophosphamide (CP) derivatives 4-hydroperoxycyclophosphamide (4HC) and phosphorodiamidic mustard (PM). We compared the sensitivity of the wild-type CHO cell line, AA8, with that of the CHO mutant cell lines UV4 and UV20 (ERCC1-), UV5 (ERCC2-), UV24 (ERCC3-), UV41 (ERCC4-), UV135 (ERCC5-), UV61 (ERCC6-), and EM9 (XRCC1-). Cell survival was determined using both growth inhibition and conventional clonogenic assays. The yield of DNA crosslinks in selected cell lines was determined using an ethidium bromide fluorescence assay. Results: The rank ordering of sensitivity to both 4HC and PM, based on the combined survival data, was UV41/UV4/UV20≫ UV61/UV24/UV135/EM9≥UV5≈AA8. Thus mutations in the ERCC1 and ERCC4 genes impart a hypersensitivity to CP analogs. To confirm the importance of the ERCC1 gene for cellular resistance to 4HC and PM, UV20 cells were transfected with the human ERCC1 gene and subsequently exposed to 4HC and PM. The transfected cells displayed essentially wild-type resistance to both drugs. Furthermore, two interspecific hybrids derived from UV41, both of which retained the region of human chromosome 16 that harbors the ERCC4 gene, displayed essentially wild-type resistance to 4HC and PM, confirming the importance of ERCC4 for the repair of 4HC-induced DNA damage. When crosslinks were assayed after a 60-min treatment with 4HC or a 15-min treatment with PM, their yield paralleled the sensitivity of the cell lines to both drugs: UV41 cells showed markedly elevated levels of crosslinks, whereas AA8 and UV5 cells showed similar (low) levels of crosslinks. Conclusions: Our findings confirm the general pattern indicating that the ERCC1 and ERCC4 gene products are crucial for the repair of 4HC-induced DNA damage, while the other nucleotide excision repair genes examined are relatively unimportant. These data suggest that the hypersensitivity of ERCC1- and ERCC4- mutants to DNA crosslinking agents may reflect a defect in recombinational repair rather than nucleotide excision repair.

Collaboration


Dive into the Randy J. Legerski's collaboration.

Top Co-Authors

Avatar

Lei Li

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Carolyn A. Peterson

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xiaoshan Zhang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xiaoyan Lu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Nianxiang Zhang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Shamima Akhter

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Siciliano

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Christopher T. Richie

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Lie Cheng

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge