Randy L. Johnson
University of Texas Health Science Center at Houston
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Randy L. Johnson.
Cell | 1993
Robert D. Riddle; Randy L. Johnson; Ed Laufer; Cliff Tabin
The zone of polarizing activity (ZPA) is a region at the posterior margin of the limb bud that induces mirror-image duplications when grafted to the anterior of a second limb. We have isolated a vertebrate gene, Sonic hedgehog, related to the Drosophila segment polarity gene hedgehog, which is expressed specifically in the ZPA and in other regions of the embryo, that is capable of polarizing limbs in grafting experiments. Retinoic acid, which can convert anterior limb bud tissue into tissue with polarizing activity, concomitantly induces Sonic hedgehog expression in the anterior limb bud. Implanting cells that express Sonic hedgehog into anterior limb buds is sufficient to cause ZPA-like limb duplications. Like the ZPA, Sonic hedgehog expression leads to the activation of Hox genes. Sonic hedgehog thus appears to function as the signal for antero-posterior patterning in the limb.
Development | 2011
Georg Halder; Randy L. Johnson
The Hippo pathway has emerged as a conserved signaling pathway that is essential for the proper regulation of organ growth in Drosophila and vertebrates. Although the mechanisms of signal transduction of the core kinases Hippo/Mst and Warts/Lats are relatively well understood, less is known about the upstream inputs of the pathway and about the downstream cellular and developmental outputs. Here, we review recently discovered mechanisms that contribute to the dynamic regulation of Hippo signaling during Drosophila and vertebrate development. We also discuss the expanding diversity of Hippo signaling functions during development, discoveries that shed light on a complex regulatory system and provide exciting new insights into the elusive mechanisms that regulate organ growth and regeneration.
Science | 2011
Todd Heallen; Min Zhang; Jun Wang; Margarita Bonilla-Claudio; Ela Klysik; Randy L. Johnson; James F. Martin
Heart size is controlled through an antagonistic interaction between Hippo and Wnt signaling pathways. Genetic regulation of mammalian heart size is poorly understood. Hippo signaling represents an organ-size control pathway in Drosophila, where it also inhibits cell proliferation and promotes apoptosis in imaginal discs. To determine whether Hippo signaling controls mammalian heart size, we inactivated Hippo pathway components in the developing mouse heart. Hippo-deficient embryos had overgrown hearts with elevated cardiomyocyte proliferation. Gene expression profiling and chromatin immunoprecipitation revealed that Hippo signaling negatively regulates a subset of Wnt target genes. Genetic interaction studies indicated that β-catenin heterozygosity suppressed the Hippo cardiomyocyte overgrowth phenotype. Furthermore, the Hippo effector Yap interacts with β-catenin on Sox2 and Snai2 genes. These data uncover a nuclear interaction between Hippo and Wnt signaling that restricts cardiomyocyte proliferation and controls heart size.
Nature | 1999
Mel Fang Lu; Carolyn Pressman; Rex Dyer; Randy L. Johnson; James F. Martin
Rieger syndrome, an autosomal dominant disorder, includes ocular, craniofacial and umbilical abnormalities. The pitx2 homeobox gene, which is mutated in Rieger syndrome, has been proposed to be the effector molecule interpreting left–right axial information from the early embryonic trunk to each organ. Here we have used gene targeting in mice to generate a loss-of-function allele that would be predicted to result in organ randomization or isomerization. Although pitx2-/- embryos had abnormal cardiac morphogenesis, mutant hearts looped in the normal direction. Pitx2-/- embryos had correctly oriented, but arrested, embryonic rotation and right pulmonary isomerism. They also had defective development of the mandibular and maxillary facial prominences, regression of the stomodeum and arrested tooth development. Fgf8 expression was absent, and Bmp4 expression was expanded in the branchial-arch ectoderm. These data reveal a critical role for pitx2 in left–right asymmetry but indicate that pitx2 may function at an intermediate step in cardiac morphogenesis and embryonic rotation.
Cell | 1994
Randy L. Johnson; Ed Laufer; Robert D. Riddle; Cliff Tabin
Differentiation of somites into sclerotome, dermatome, and myotome is controlled by a complex set of inductive interactions. The ability of axial midline tissues, the notochord and floor plate, to induce sclerotome has been well documented and has led to models in which ventral somite identity is specified by signals derived from the notochord and floor plate. Herein, we provide evidence that Sonic hedgehog, a vertebrate homolog of the Drosophila segment polarity gene hedgehog, is a signal produced by the notochord and floor plate that directs ventral somite differentiation. Sonic hedgehog is expressed in ventral midline tissues at critical times during somite specification and has the ability, when ectopically expressed, to enhance the formation of sclerotome and antagonize the development of dermatome.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Li Lu; Ying Li; Soo Mi Kim; Wouter Bossuyt; Pu Liu; Qiong Qiu; Yingdi Wang; Georg Halder; Milton J. Finegold; Ju Seog Lee; Randy L. Johnson
How organ size is controlled in mammals is not currently understood. In Drosophila the Hippo signaling pathway functions to suppress growth in imaginal discs and has been suggested to control organ size. To investigate the role of hippo signaling in regulation of mammalian organ size we have generated conditional alleles of Sav1, mst1, and mst2, orthologs of Drosophila Salvador and hippo, respectively. Specific deletion of both mst1 and mst2 in hepatocytes results in significantly enlarged livers due to excessive proliferation. By the age of 5–6 months, mst1/2 conditional mutant livers have multiple foci of liver tumors, indicating that the combined activities of mst1 and mst2 act as redundant tumor suppressors in hepatocytes. Similar findings were obtained with liver-specific deletion of Sav1, a second core Hippo signaling component that facilitates activation of mst1 and mst2. Tumors from sav1 mutants exhibited varied morphology, suggesting a mixed-lineage origin of tumor-initiating cells. Transcriptional profiling of liver tissues from both mst1/2 and sav1 conditional mutants revealed a network of Hippo signaling regulated genes with specific enrichment for genes involved in immune and inflammatory responses. Histological and immunological characterization of mst1/2 double mutant liver tissues revealed abundant accumulation of adult facultative stem cells termed oval cells in periductal regions. Because oval cells induction is commonly associated with liver injury and tumor formation, it is likely that these cells contribute to the enlarged livers and hepatomas that we observe in sav1 and mst1/2 mutants. Taken together, our results demonstrate that the Hippo signaling pathway is a critical regulator of mammalian liver growth and a potent suppressor of liver tumor formation.
Nature | 1998
Yvonne A. Evrard; Yi Lun; Alexander Aulehla; Lin Gan; Randy L. Johnson
The gene lunatic fringe encodes a secreted factor with significant sequence similarity to the Drosophila gene fringe. fringe has been proposed to function as a boundary-specific signalling molecule in the wing imaginal disc, where it is required to localize signalling activity by the protein Notch to the presumptive wing margin,. By targeted disruption in mouse embryos, we show here that lunatic fringe is likewise required for boundary formation. lunatic fringe mutants fail to form boundaries between individual somites, the initial segmental unit of the vertebrate trunk. In addition, the normal alternating rostral–caudal pattern of the somitic mesoderm is disrupted, suggesting that intersomitic boundary formation and rostral–caudal patterning of somites are mechanistically linked by a process that requires lunatic fringe activity. As a result, the derivatives of the somitic mesoderm, especially the axial skeleton, are severely disorganized in lunatic fringe mutants. Taken together, our results demonstrate an essential function for a vertebrate fringe homologue and suggest a model in which lunatic fringe modulates Notch signalling in the segmental plate to regulate somitogenesis and rostral–caudal patterning of somites simultaneously.
Nature Reviews Drug Discovery | 2014
Randy L. Johnson; Georg Halder
The Hippo signalling pathway is an emerging growth control and tumour suppressor pathway that regulates cell proliferation and stem cell functions. Defects in Hippo signalling and hyperactivation of its downstream effectors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) contribute to the development of cancer, which suggests that pharmacological inhibition of YAP and TAZ activity may be an effective anticancer strategy. Conversely, YAP and TAZ can also have beneficial roles in stimulating tissue repair and regeneration following injury, so their activation may be therapeutically useful in these contexts. A complex network of intracellular and extracellular signalling pathways that modulate YAP and TAZ activities have recently been identified. Here, we review the regulation of the Hippo signalling pathway, its functions in normal homeostasis and disease, and recent progress in the identification of small-molecule pathway modulators.
The Journal of Neuroscience | 2008
Matthew R. Hodges; Glenn J. Tattersall; Michael B. Harris; Sean McEvoy; Diana Richerson; Evan S. Deneris; Randy L. Johnson; Zhou-Feng Chen; George B. Richerson
Serotonergic neurons project widely throughout the CNS and modulate many different brain functions. Particularly important, but controversial, are the contributions of serotonin (5-HT) neurons to respiratory and thermoregulatory control. To better define the roles of 5-HT neurons in breathing and thermoregulation, we took advantage of a unique conditional knock-out mouse in which Lmx1b is genetically deleted in Pet1-expressing cells (Lmx1bf/f/p), resulting in near-complete absence of central 5-HT neurons. Here, we show that the hypercapnic ventilatory response in adult Lmx1bf/f/p mice was decreased by 50% compared with wild-type mice, whereas baseline ventilation and the hypoxic ventilatory response were normal. In addition, Lmx1bf/f/p mice rapidly became hypothermic when exposed to an ambient temperature of 4°C, decreasing core temperature to 30°C within 120 min. This failure of thermoregulation was caused by impaired shivering and nonshivering thermogenesis, whereas thermosensory perception and heat conservation were normal. Finally, intracerebroventricular infusion of 5-HT stimulated baseline ventilation, and rescued the blunted hypercapnic ventilatory response. These data identify a previously unrecognized role of 5-HT neurons in the CO2 chemoreflex, whereby they enhance the response of the rest of the respiratory network to CO2. We conclude that the proper function of the 5-HT system is particularly important under conditions of environmental stress and contributes significantly to the hypercapnic ventilatory response and thermoregulatory cold defense.
Nature | 2003
Benjamin T. Kile; Kathryn E. Hentges; Amander T. Clark; Hisashi Nakamura; Andrew P. Salinger; Bin Liu; Neil F. Box; David W. Stockton; Randy L. Johnson; Richard R. Behringer; Allan Bradley; Monica J. Justice
Now that the mouse and human genome sequences are complete, biologists need systematic approaches to determine the function of each gene. A powerful way to discover gene function is to determine the consequence of mutations in living organisms. Large-scale production of mouse mutations with the point mutagen N-ethyl-N-nitrosourea (ENU) is a key strategy for analysing the human genome because mouse mutants will reveal functions unique to mammals, and many may model human diseases. To examine genes conserved between human and mouse, we performed a recessive ENU mutagenesis screen that uses a balancer chromosome, inversion chromosome 11 (refs 4, 5). Initially identified in the fruitfly, balancer chromosomes are valuable genetic tools that allow the easy isolation of mutations on selected chromosomes. Here we show the isolation of 230 new recessive mouse mutations, 88 of which are on chromosome 11. This genetic strategy efficiently generates and maps mutations on a single chromosome, even as mutations throughout the genome are discovered. The mutations reveal new defects in haematopoiesis, craniofacial and cardiovascular development, and fertility.