Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Randy M. Wadkins is active.

Publication


Featured researches published by Randy M. Wadkins.


Current Medicinal Chemistry | 2006

Carboxylesterases--detoxifying enzymes and targets for drug therapy.

Philip M. Potter; Randy M. Wadkins

Carboxylesterases (CE) are ubiquitous enzymes responsible for the detoxification of xenobiotics. Many therapeutically useful drugs are metabolized by these proteins which impacts upon the efficiency of drug treatment. In some instances, CEs convert inactive prodrugs to active metabolites, a process that is essential for biological activity. Such compounds include the anticancer agents CPT-11 (3) and capecitabine (4), the antibiotics Ceftin (9) and Vantin, as well as the illicit street drug heroin (6). However, more commonly, CEs hydrolyze many esterified drugs to inactive products that are then excreted. Agents such as flestolol (11), meperidine (5), lidocaine (8) and cocaine (7), are all hydrolyzed and inactivated by these enzymes. Therefore the efficacy of esterified drugs will be dependent upon the distribution and catalytic activity of different CEs. In this review, we examine the structural aspects of CEs and their roles in drug detoxification and propose that modulation of CE activity may allow for improvements in, and potentiation of, drug efficacy.


British Journal of Pharmacology | 2010

Biochemical and molecular analysis of carboxylesterase-mediated hydrolysis of cocaine and heroin

Mj Hatfield; Lyudmila Tsurkan; Janice L. Hyatt; X Yu; Carol C. Edwards; Latorya D. Hicks; Randy M. Wadkins; Philip M. Potter

Background and purpose:  Carboxylesterases (CEs) metabolize a wide range of xenobiotic substrates including heroin, cocaine, meperidine and the anticancer agent CPT‐11. In this study, we have purified to homogeneity human liver and intestinal CEs and compared their ability with hydrolyse heroin, cocaine and CPT‐11.


Biochemistry | 2014

Epigenetic Modification, Dehydration, and Molecular Crowding Effects on the Thermodynamics of i-Motif Structure Formation from C-Rich DNA

Yogini P. Bhavsar-Jog; Eric Van Dornshuld; Tracy A. Brooks; Gregory S. Tschumper; Randy M. Wadkins

DNA sequences with the potential to form secondary structures such as i-motifs (iMs) and G-quadruplexes (G4s) are abundant in the promoters of several oncogenes and, in some instances, are known to regulate gene expression. Recently, iM-forming DNA strands have also been employed as functional units in nanodevices, ranging from drug delivery systems to nanocircuitry. To understand both the mechanism of gene regulation by iMs and how to use them more efficiently in nanotechnological applications, it is essential to have a thorough knowledge of factors that govern their conformational states and stabilities. Most of the prior work to characterize the conformational dynamics of iMs have been done with iM-forming synthetic constructs like tandem (CCT)n repeats and in standard dilute buffer systems. Here, we present a systematic study on the consequences of epigenetic modifications, molecular crowding, and degree of hydration on the stabilities of an iM-forming sequence from the promoter of the c-myc gene. Our results indicate that 5-hydroxymethylation of cytosines destabilized the iMs against thermal and pH-dependent melting; contrarily, 5-methylcytosine modification stabilized the iMs. Under molecular crowding conditions (PEG-300, 40% w/v), the thermal stability of iMs increased by ∼10 °C, and the pKa was raised from 6.1 ± 0.1 to 7.0 ± 0.1. Lastly, the iM’s stability at varying degrees of hydration in 1,2-dimethoxyethane, 2-methoxyethanol, ethylene glycol, 1,3-propanediol, and glycerol cosolvents indicated that the iMs are stabilized by dehydration because of the release of water molecules when folded. Our results highlight the importance of considering the effects of epigenetic modifications, molecular crowding, and the degree of hydration on iM structural dynamics. For example, the incorporation of 5-methylycytosines and 5-hydroxymethlycytosines in iMs could be useful for fine-tuning the pH- or temperature-dependent folding/unfolding of an iM. Variations in the degree of hydration of iMs may also provide an additional control of the folded/unfolded state of iMs without having to change the pH of the surrounding matrix.


Molecular Pharmacology | 2006

Analysis of Mammalian Carboxylesterase Inhibition by Trifluoromethylketone-Containing Compounds

Randy M. Wadkins; Janice L. Hyatt; Carol C. Edwards; Lyudmila Tsurkan; Matthew R. Redinbo; Craig E. Wheelock; Paul D. Jones; Bruce D. Hammock; Philip M. Potter

Carboxylesterases (CE) are ubiquitous enzymes that hydrolyze numerous ester-containing xenobiotics, including complex molecules, such as the anticancer drugs irinotecan (CPT-11) and capecitabine and the pyrethroid insecticides. Because of the role of CEs in the metabolism of many exogenous and endogenous ester-containing compounds, a number of studies have examined the inhibition of this class of enzymes. Trifluoromethylketone-containing (TFK) compounds have been identified as potent CE inhibitors. In this article, we present inhibition constants for 21 compounds, including a series of sulfanyl, sulfinyl, and sulfonyl TFKs with three mammalian CEs, as well as human acetyl- and butyrylcholinesterase. To examine the nature of the slow tight-binding inhibitor/enzyme interaction, assays were performed using either a 5-min or a 24-h preincubation period. Results showed that the length of the preincubation interval significantly affects the inhibition constants on a structurally dependent basis. The TFK-containing compounds were generally potent inhibitors of mammalian CEs, with Ki values as low as 0.3 nM observed. In most cases, thioether-containing compounds were more potent inhibitors then their sulfinyl or sulfonyl analogs. QSAR analyses demonstrated excellent observed versus predicted values correlations (r2 ranging from 0.908–0.948), with cross-correlation coefficients (q2) of ∼0.9. In addition, pseudoreceptor models for the TKF analogs were very similar to structures and models previously obtained using benzil- or sulfonamide-based CE inhibitors. These studies indicate that more potent, selective CE inhibitors, containing long alkyl or aromatic groups attached to the thioether chemotype in TFKs, can be developed for use in in vivo enzyme inhibition.


Cancer Research | 2004

Hydrophilic Camptothecin Analogs That Form Extremely Stable Cleavable Complexes with DNA and Topoisomerase I

Randy M. Wadkins; David J. Bearss; Govindarajan Manikumar; M. C. Wani; Monroe E. Wall; Daniel D. Von Hoff

Camptothecin (CPT) analogs that form more stable ternary complexes with DNA and topoisomerase I (termed cleavable complexes) show greater activity in their ability to inhibit tumor cell line growth in preclinical studies. Based on our earlier work, we hypothesized that analogs bearing hydrogen bonding moieties at the 7- through 10-position of CPT would result in more stable cleavable complexes. Consequently, we synthesized analogs with 7-mono-, 7-di-, and 7-trihydroxymethylaminomethyl groups. These analogs showed increasing cleavable complex stability as the number of hydroxyl groups was increased. The 7-trihydroxymethylaminomethyl analog of 10,11-methylenedioxycamptothecin (THMAM-MD) showed remarkable ternary complex stability with a half-life of 116 minutes. This is an order of magnitude more stable than any previously examined analog. Our in vitro analysis demonstrated that these analogs were all potent topoisomerase I poisons and could inhibit tumor cell growth in culture. We studied the effects of THMAM-MD in vivo in severe combined immunodeficient mice bearing HT-29 colon cancer and MiaPaCa-2 pancreatic cancer tumors. The THMAM-MD analog showed excellent, persisting activity in inhibiting tumor growth with both lines. Taken together, our results suggest that CPTs with hydrophilic, hydrogen-bonding groups at the 7-position hold the promise of excellent clinical activity.


Journal of Medicinal Chemistry | 2009

Improved, Selective, Human Intestinal Carboxylesterase Inhibitors Designed to Modulate 7-Ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (Irinotecan; CPT-11) Toxicity

Latorya D. Hicks; Janice L. Hyatt; Shana V. Stoddard; Lyudmila Tsurkan; Carol C. Edwards; Randy M. Wadkins; Philip M. Potter

CPT-11 is an antitumor prodrug that is hydrolyzed by carboxylesterases (CE) to yield SN-38, a potent topoisomerase I poison. However, the dose limiting toxicity delays diarrhea that is thought to arise, in part, from activation of the prodrug by a human intestinal CE (hiCE). Therefore, we have sought to identify selective inhibitors of hiCE that may have utility in modulating drug toxicity. We have evaluated one such class of molecules (benzene sulfonamides) and developed QSAR models for inhibition of this protein. Using these predictive models, we have synthesized a panel of fluorene analogues that are selective for hiCE, demonstrating no cross reactivity to the human liver CE, hCE1, or toward human cholinesterases, and have K(i) values as low as 14 nM. These compounds prevented hiCE-mediated hydrolysis of the drug and the potency of enzyme inhibition correlated with the clogP of the molecules. These studies will allow the development and application of hiCE-specific inhibitors designed to selectively modulate drug hydrolysis in vivo.


Biochemistry | 2015

Effect of Interior Loop Length on the Thermal Stability and pKa of i-Motif DNA

Samantha M. Reilly; Rhianna K. Morgan; Tracy A. Brooks; Randy M. Wadkins

The four-stranded i-motif (iM) conformation of cytosine-rich DNA is important in a wide variety of biochemical systems ranging from its use in nanomaterials to a potential role in oncogene regulation. An iM is stabilized by acidic pH that allows hemiprotonated cytidines to form a C·C(+) base pair. Fundamental studies that aim to understand how the lengths of loops connecting the protonated C·C(+) pairs affect intramolecular iM physical properties are described here. We characterized both the thermal stability and the pK(a) of intramolecular iMs with differing loop lengths, in both dilute solutions and solutions containing molecular crowding agents. Our results showed that intramolecular iMs with longer central loops form at pHs and temperatures higher than those of iMs with longer outer loops. Our studies also showed that increases in thermal stability of iMs when molecular crowding agents are present are dependent on the loop that is lengthened. However, the increase in pK(a) for iMs when molecular crowding agents are present is insensitive to loop length. Importantly, we also determined the proton activity of solutions containing high concentrations of molecular crowding agents to ascertain whether the increase in pK(a) of an iM is caused by alteration of this activity in buffered solutions. We determined that crowding agents alone increase the apparent pK(a) of a number of small molecules as well as iMs but that increases to iM pK(a) were greater than that expected from a shift in proton activity.


Biophysical Journal | 2009

DNA Hairpins Containing the Cytidine Analog Pyrrolo-dC: Structural, Thermodynamic, and Spectroscopic Studies

Xu Zhang; Randy M. Wadkins

Structures formed by single-strand DNA have become increasingly interesting because of their roles in a number of biological processes, particularly transcription and its regulation. Of particular importance is the fact that antitumor drugs such as Actinomycin D can selectively bind DNA hairpins over fully paired, double-strand DNA. A new fluorescent base analog, pyrrolo-deoxycytidine (PdC), can now be routinely incorporated into single-strand DNA. The fluorescence of PdC is particularly useful for studying the formation of single-strand DNA in regions of double-strand DNA. The fluorescence is quenched when PdC is paired with a complementary guanine residue, and thus is greatly enhanced upon formation of single-strand DNA. Hence, any process that results in melting or opening of DNA strands produces an increase in the fluorescence intensity of this base analog. In this study we measured the structural effects of incorporating PdC into DNA hairpins, and the effect of this incorporation on the binding of the hairpins by a fluorescent analog of the drug Actinomycin D. Two hairpin DNAs were used: one with PdC in the stem (basepaired) and one with PdC in the loop (unpaired). The thermal stability, 7-aminoactinomycin D binding, and three-dimensional structures of PdC incorporated into these DNA hairpins were all quite similar as compared to the hairpins containing an unmodified dC residue. Fluorescence lifetime measurements indicate that two lifetimes are present in PdC, and that the increase in fluorescence of the unpaired PdC residue compared to the basepaired PdC is due to an increase in the contribution of the longer lifetime to the average fluorescence lifetime. Our data indicate that PdC can be used effectively to differentiate paired and unpaired bases in DNA hairpin secondary structures, and should be similarly applicable for related structures such as cruciforms and quadruplexes. Further, our data indicate that PdC can act as a fluorescence resonance energy transfer donor for the fluorescent drug 7-aminoactinomycin D.


Current Medicinal Chemistry - Anti-cancer Agents | 2004

Topoisomerase I-DNA complex stability induced by camptothecins and its role in drug activity.

Randy M. Wadkins; David J. Bearss; Govindarajan Manikumar; M. C. Wani; Monroe E. Wall; Daniel D. Von Hoff

The mechanism of cytotoxicity of the camptothecin family of antitumor drugs is thought to be the consequence of a collision between moving replication forks and camptothecin-stabilized cleavable DNA-topoisomerase I complexes. One property of camptothecin analogs relevant to their potent antitumor activity is the slow reversal of the cleavable complexes formed with these drugs. The persistence of cleavable complexes with time may be an essential property for increasing the likelihood of a collision between the replication fork and a cleavable complex, giving rise to lethal DNA lesions. In this paper, we examined a number of camptothecin analogs forming cleavable complexes with distinctly different stabilities. Absolute reaction rate analysis was carried out for each derivative. Our results indicate that the stability of the cleavable complex is dominated by the activation entropy (DeltaS++) of the reversal process. We measured the relative lipophilicity of the CPT analogs by reverse-phase HPLC, but the DeltaS++ of complex reversal is not directly related to the lipophilicity of the CPT analog being used. We suggest that solvent ordering around the 7- through 10-position of the CPT ring may be responsible for reversal rates dependence on DeltaS++. We demonstrate that the cleavable complex stability conferred by each camptothecin analog is directly correlated with the induction of apoptosis and cytotoxicity to tumor cells.


Expert Opinion on Drug Metabolism & Toxicology | 2008

Modifications of human carboxylesterase for improved prodrug activation

Jason M Hatfield; Monika Wierdl; Randy M. Wadkins; Philip M. Potter

Background: Carboxylesterases (CEs) are ubiquitous enzymes responsible for the hydrolysis of numerous clinically useful drugs. As ester moieties are frequently included in molecules to improve their water solubility and bioavailability, de facto they become substrates for CEs. Objective: In this review, we describe the properties of human CEs with regard to their ability to activate anticancer prodrugs and demonstrate how structure-based design can be used to modulate substrate specificity and to increase efficiency of hydrolysis. Methods: A specific example using CPT-11 and a human liver CE is discussed. However, these techniques can be applied to other enzymes and their associated prodrugs. Results: Structure-guided mutagenesis of CEs can be employed to alter substrate specificity and generate novel enzymes that are efficacious at anticancer prodrug activation.

Collaboration


Dive into the Randy M. Wadkins's collaboration.

Top Co-Authors

Avatar

Philip M. Potter

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Janice L. Hyatt

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Monika Wierdl

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Carol C. Edwards

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Lyudmila Tsurkan

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Christopher L. Morton

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary K. Danks

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Tracy A. Brooks

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge