Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rangan Gupta is active.

Publication


Featured researches published by Rangan Gupta.


Current Molecular Medicine | 2010

Role of transforming growth factor beta in corneal function, biology and pathology

Ashish Tandon; Jonathan Tovey; Ajay Sharma; Rangan Gupta; Rajiv R. Mohan

Transforming growth factor-beta (TGFbeta) is a pleiotropic multifunctional cytokine that regulates several essential cellular processes in many parts of the body including the cornea. Three isoforms of TGFbeta are known in mammals and the human cornea expresses all of them. TGFbeta1 has been shown to play a central role in scar formation in adult corneas whereas TGFbeta2 and TGFbeta3 have been implicated to play a critical role in corneal development and scarless wound healing during embryogenesis. The biological effects of TGFbeta in the cornea have been shown to follow Smad dependent as well as Smad-independent signaling pathways depending upon cellular responses and microenvironment. Corneal TGFbeta expression is necessary for maintaining corneal integrity and corneal wound healing. On the other hand, TGFbeta is perhaps the most important cytokine in the pathogenesis of fibrotic disease in the cornea. Although the transformation of keratocytes to myofibroblasts induced by TGFbeta is largely believed to cause corneal fibrosis or scarring, the precise molecular mechanism(s) involved in this process is still unknown. Currently no drugs are available to treat corneal scarring effectively without causing significant side effects. Many approaches to treat TGFbeta-mediated corneal scarring are under investigation. These include blocking of TGFbeta, TGFbeta receptor, TGFbeta function and/or TGFbeta maturation. Other strategies such as modulating keratocyte proliferation, apoptosis, transcription and DNA condensation are also being investigated. The potential of gene therapy to neutralize the pathologic effects of TGFbeta has also been demonstrated recently.


Experimental Eye Research | 2010

Decorin transfection suppresses profibrogenic genes and myofibroblast formation in human corneal fibroblasts

Rajiv R. Mohan; Rangan Gupta; John W. Cowden; S. Sinha

Decorin, a small leucine-rich proteoglycan, is a natural inhibitor of transforming growth factor beta (TGFbeta). Myofibroblast and haze formation in the cornea have been attributed to TGFbeta hyperactivity released from corneal epithelium following injury to eye. This study tested the hypothesis that decorin-gene transfer inhibits TGFbeta-driven myofibroblast and haze formation in the cornea. Human corneal fibroblast (HSF) cultures generated from donor human corneas were used. Decorin cDNA was cloned into mammalian expression vector. Restriction enzyme analysis and DNA sequencing confirmed the nucleotide sequence of generated vector construct. The decorin gene cloned into mammalian expression vector was introduced into HSF with lipofectamine transfection kit. Expression of decorin in selected clones was characterized with RT-PCR, immunocytochemistry and western blotting. Phage contrast microscopy and trypan blue exclusion assay evaluated the effects of decorin-gene transfer on HSF phenotype and viability, respectively. Real-time PCR, western blot and immunocytochemistry were used to analyze inhibitory effects of decorin-gene transfer on TGFbeta-induced myofibroblast formation by measuring differential expression of alpha smooth muscle actin (SMA), a myofibroblast marker, mRNA and protein expression. Analysis of variance (ANOVA) and the Bonferroni-Dunn adjustment for repeated measures were used for statistical analysis. Our data indicate that decorin-gene transfer into HSF do not alter cellular phenotype or viability. Decorin over-expressing HSF clones grown in the presence of TGFbeta1 under serum-free conditions showed a statistically significant 80-83% decrease in SMA expression (p value < 0.01) compared to naked-vector transfected clones or un-transfected HSF controls. Decorin-transfected, naked-vector transfected and un-transfected HSF grown in the absence of TGFbeta1 showed no or extremely low expression of SMA. Furthermore, decorin over-expression did not affect HSF phenotype and decreased TGFbeta-induced RNA levels of profibrogenic genes such as fibronectin, collagen type I, III, and IV that play important role in stromal matrix modulation and corneal wound healing. The results of study suggest that decorin-gene transfer effectively prevents TGFbeta-driven transformation of keratocyte and corneal fibroblast to myofibroblasts. We postulate that decorin-gene therapy can be used to treat corneal haze in vivo.


Current Molecular Medicine | 2011

Decorin Biology, Expression, Function and Therapy in the Cornea

Rajiv R. Mohan; Jonathan Tovey; Rangan Gupta; Ajay Sharma; Ashish Tandon

Decorin is a small leucine-rich proteoglycan (SLRP) that plays a vital role in many important cellular processes in several tissues including the cornea. A normal constituent of the corneal stroma, decorin is also found in the majority of connective tissues and is related structurally to other small proteoglycans. It interacts with various growth factors such as epidermal growth factor (EGF) and transforming growth factor beta (TGFβ) to regulate processes like collagen fibrillogenesis, extracellular matrix (ECM) compilation, and cell-cycle progression. Studies have linked decorin dysregulation to delayed tissue healing in patients with various diseases including cancer. In the cornea, decorin is involved in the regulation of transparency, a key function for normal vision. It has been reported that mutations in the decorin gene are associated with congenital stromal dystrophy, a disease that leads to corneal opacity and visual abnormalities. Decorin also antagonizes TGFβ in the cornea, a central regulatory cytokine in corneal wound healing. Following corneal injury, increased TGFβ levels induce keratocyte transdifferentiation to myofibroblasts and, subsequently, fibrosis (scarring) in the cornea. We recently reported that decorin overexpression in corneal fibroblasts blocks TGFβ-driven myofibroblast transformation and fibrosis development in the cornea in vitro suggesting that decorin gene therapy can be used for the treatment of corneal scarring in vivo.


Molecular Endocrinology | 2012

Squelching of ETS2 Transactivation by POU5F1 Silences the Human Chorionic Gonadotropin CGA Subunit Gene in Human Choriocarcinoma and Embryonic Stem Cells

Rangan Gupta; Toshihiko Ezashi; R. Michael Roberts

The subunit genes encoding human chorionic gonadotropin, CGA, and CGB, are up-regulated in human trophoblast. However, they are effectively silenced in choriocarcinoma cells by ectopically expressed POU domain class 5 transcription factor 1 (POU5F1). Here we show that POU5F1 represses activity of the CGA promoter through its interactions with ETS2, a transcription factor required for both placental development and human chorionic gonadotropin subunit gene expression, by forming a complex that precludes ETS2 from interacting with the CGA promoter. Mutation of a POU5F1 binding site proximal to the ETS2 binding site does not alter the ability of POU5F1 to act as a repressor but causes a drop in basal promoter activity due to overlap with the binding site for DLX3. DLX3 has only a modest ability to raise basal CGA promoter activity, but its coexpression with ETS2 can up-regulate it 100-fold or more. The two factors form a complex, and both must bind to the promoter for the combination to be transcriptionally effective, a synergy compromised by POU5F1. Similarly, in human embryonic stem cells, which express ETS2 but not CGA, ETS2 does not occupy its binding site on the CGA promoter but is found instead as a soluble complex with POU5F1. When human embryonic stem cells differentiate in response to bone morphogenetic protein-4 and concentrations of POU5F1 fall and hCG and DLX3 rise, ETS2 then occupies its binding site on the CGA promoter. Hence, a squelching mechanism underpins the transcriptional silencing of CGA by POU5F1 and could have general relevance to how pluripotency is maintained and how the trophoblast lineage emerges from pluripotent precursor cells.


PLOS ONE | 2011

Efficacious and safe tissue-selective controlled gene therapy approaches for the cornea.

Rajiv R. Mohan; S. Sinha; Ashish Tandon; Rangan Gupta; Jonathan Tovey; Ajay Sharma

Untargeted and uncontrolled gene delivery is a major cause of gene therapy failure. This study aimed to define efficient and safe tissue-selective targeted gene therapy approaches for delivering genes into keratocytes of the cornea in vivo using a normal or diseased rabbit model. New Zealand White rabbits, adeno-associated virus serotype 5 (AAV5), and a minimally invasive hair-dryer based vector-delivery technique were used. Fifty microliters of AAV5 titer (6.5×1012 vg/ml) expressing green fluorescent protein gene (GFP) was topically applied onto normal or diseased (fibrotic or neovascularized) rabbit corneas for 2-minutes with a custom vector-delivery technique. Corneal fibrosis and neovascularization in rabbit eyes were induced with photorefractive keratectomy using excimer laser and VEGF (630 ng) using micropocket assay, respectively. Slit-lamp biomicroscopy and immunocytochemistry were used to confirm fibrosis and neovascularization in rabbit corneas. The levels, location and duration of delivered-GFP gene expression in the rabbit stroma were measured with immunocytochemistry and/or western blotting. Slot-blot measured delivered-GFP gene copy number. Confocal microscopy performed in whole-mounts of cornea and thick corneal sections determined geometric and spatial localization of delivered-GFP in three-dimensional arrangement. AAV5 toxicity and safety were evaluated with clinical eye exam, stereomicroscopy, slit-lamp biomicroscopy, and H&E staining. A single 2-minute AAV5 topical application via custom delivery-technique efficiently and selectively transduced keratocytes in the anterior stroma of normal and diseased rabbit corneas as evident from immunocytochemistry and confocal microscopy. Transgene expression was first detected at day 3, peaked at day 7, and was maintained up to 16 weeks (longest tested time point). Clinical and slit-lamp eye examination in live rabbits and H&E staining did not reveal any significant changes between AAV5-treated and untreated control corneas. These findings suggest that defined gene therapy approaches are safe for delivering genes into keratocytes in vivo and has potential for treating corneal disorders in human patients.


Veterinary Ophthalmology | 2011

Mitomycin C: a promising agent for the treatment of canine corneal scarring

Rangan Gupta; Benjamin W. Yarnall; Elizabeth A. Giuliano; Jagat R. Kanwar; Dylan G. Buss; Rajiv R. Mohan

OBJECTIVE To evaluate the safety and efficacy of mitomycin C (MMC) in prevention of canine corneal scarring. METHODS With an in vitro approach using healthy canine corneas, cultures of primary canine corneal fibroblasts or myofibroblasts were generated. Primary canine corneal fibroblasts were obtained by growing corneal buttons in minimal essential medium supplemented with 10% fetal bovine serum. Canine corneal myofibroblasts were produced by growing cultures in serum-free medium containing transforming growth factor β1 (1 ng/mL). Trypan blue assay and phase-contrast microscopy were used to evaluate the toxicity of three doses of MMC (0.002%, 0.02% and 0.04%). Real-time PCR, immunoblot, and immunocytochemistry techniques were used to determine MMC efficacy to inhibit markers of canine corneal scarring. RESULTS A single 2-min treatment of 0.02% or less MMC did not alter canine corneal fibroblast or keratocyte phenotype, viability, or growth. The 0.02% dose substantially reduced myofibroblast formation (up to 67%; P < 0.001), as measured by the change in RNA and protein expression of fibrosis biomarkers (α-smooth muscle actin and F-actin). CONCLUSION This in vitro study suggests that a single 2-min 0.02% MMC treatment to the canine corneal keratocytes is safe and may be useful in decreasing canine corneal fibrous metaplasia. In vivo studies are warranted.


Veterinary Ophthalmology | 2012

Efficacy and safety of suberoylanilide hydroxamic acid (Vorinostat) in the treatment of canine corneal fibrosis

Ann P. Bosiack; Elizabeth A. Giuliano; Rangan Gupta; Rajiv R. Mohan

OBJECTIVE Study aims were to evaluate the safety and efficacy of the Food and Drug Administration-approved drug Vorinostat [suberoylanilide hydroxamic acid (SAHA)] in the treatment of canine corneal fibrosis using an in vitro model. METHODS Healthy donor canine corneas were collected and used to generate primary canine corneal fibroblasts (CCFs) by growing cultures in minimal essential medium supplemented with 10% fetal bovine serum. Canine corneal myofibroblasts, used as a model for corneal fibrosis, were produced by growing CCF cultures in serum-free medium containing transforming growth factor β1 (1 ng/mL). Trypan blue exclusion assays were used to determine the optimal SAHA dose for this in vitro model. Four hour after culturing with TGFβ1, CCF cultures were treated with 0.06% SAHA for 5 min (group 1) and for 24 h (group 2), representing single and multiple dose treatment regimes, respectively. Cultures were then further incubated in the presence of TGFβ1 (1 ng/μL) under serum-free conditions until they reached 70% confluence. Trypan blue exclusion, immunocytochemistry, and TUNEL assays were used to evaluate the cytotoxicity of SAHA. Real-time PCR, western blot analysis, and immunocytochemistry were used to determine the efficacy of SAHA to inhibit canine corneal myofibroblast formation. RESULTS Topical SAHA application in both treatment groups successfully decreased α-smooth muscle actin expression when compared to the TGFβ1 only treatment group (P < 0.05). Tested SAHA did not affect CCF phenotype or cellular viability and did not cause significant cell death. CONCLUSIONS Suberoylanilide hydroxamic acid safely and effectively inhibits TGFβ1-induced CCFs transformation to myofibroblast in vitro.


Veterinary Ophthalmology | 2012

Canine corneal fibroblast and myofibroblast transduction with AAV5.

Ann P. Bosiack; Elizabeth A. Giuliano; Rangan Gupta; Rajiv R. Mohan

OBJECTIVE The aims of this study were (1) to determine the efficacy of adeno-associated vector serotype 5 (AAV5) for delivering gene therapy to canine corneal fibroblasts (CCFs) and myofibroblasts (CCMs) using enhanced green fluorescent protein (GFP) marker gene and (2) to evaluate the cytotoxicity of AAV5 to CCFs and CCMs using an in vitro model. METHODS Healthy donor canine corneas were used to generate primary CCFs by growing cultures in minimal essential medium supplemented with 10% fetal bovine serum. Canine corneal myofibroblasts were produced by growing cultures in serum-free medium containing transforming growth factor β1 (1 ng/mL). An AAV5 titer (6.5 × 10(12) μg/mL) expressing GFP under control of hybrid cytomegalovirus + chicken β-actin promoters (AAV5-gfp) was used to transduce CCF and CCM cultures. Delivered gene expression in CCFs and CCMs was quantified using immunocytochemistry, fluorescent microscopy, and real-time PCR. Transduction efficacy of the AAV5 vector was determined by counting DAPI-stained nuclei and EGFP-positive cells in culture. Phase-contrast microscopy, trypan blue, and dUTP nick end labeling (TUNEL) assays were used to determine the toxicity and safety of AAV5 in this canine corneal model. RESULTS Topical AAV5 application successfully transduced a significant population of CCFs (42.8%; P < 0.01) and CCMs (28%; P < 0.01). Tested AAV5 did not affect CCF or CCM phenotype or cellular viability and did not cause significant cell death. CONCLUSIONS The tested AAV5 is an effective and safe vector for canine corneal gene therapy in this in vitro model. In vivo studies are warranted.


Molecular Endocrinology | 2008

Combinatorial Roles of Protein Kinase A, Ets2, and 3′,5′-Cyclic-Adenosine Monophosphate Response Element-Binding Protein-Binding Protein/p300 in the Transcriptional Control of Interferon-τ Expression in a Trophoblast Cell Line

Padmalaya Das; Toshihiko Ezashi; Rangan Gupta; R. Michael Roberts


PMC | 2011

Polyethylenimine-conjugated gold nanoparticles: Gene transfer potential and low toxicity in the cornea

Ajay Sharma; Ashish Tandon; Jonathan Tovey; Rangan Gupta; J. David Robertson; Jennifer A. Fortune; Alexander M. Klibanov; John W. Cowden; Frank G. Rieger; Rajiv R. Mohan

Collaboration


Dive into the Rangan Gupta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ajay Sharma

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge