Rania H. Fahmy
Cairo University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rania H. Fahmy.
European Journal of Pharmaceutics and Biopharmaceutics | 2008
Rania H. Fahmy; Mohammed A. Kassem
Although famotidine was reported to be 7.5 and 20 times more potent than ranitidine and cimetidine, respectively, its oral bioavailability is low and variable; due mainly to its poor aqueous solubility. The purpose of this study was to improve famotidine dissolution through its formulation into liquisolid systems and then to investigate the in vitro and in vivo performance of the prepared liquisolid tablets. The new mathematical model was utilized to formulate various liquisolid powder systems. Both DSC and XRD suggested loss of famotidine crystallinity upon liquisolid formulation which was further confirmed by SEM indicating that even though the drug existed in a solid dosage form, it is held within the powder substrate in a solubilized, almost molecularly dispersed state, which contributed to the enhanced drug dissolution properties. All the tested liquisolid tablet formulations showed higher drug dissolution rates (DR) than the conventional, directly compressed tables. In addition, the selected optimal formula released 78.36% of its content during the first 10 min which is 39% higher than that of the directly compressed tablets. Further, the bioavailability study indicated that the prepared optimal liquisolid formula did not differ significantly from the marketed famotidine tablets concerning Cmax, tmax, and AUC(0-8) at P<0.05.
Aaps Pharmscitech | 2012
Rania H. Fahmy
Multiparticulate floating drug delivery systems have proven potential as controlled-release gastroretentive drug delivery systems that avoid the “all or none” gastric emptying nature of single-unit floating dosage forms. An objective of the presence investigation was to develop calcium silicate (CaSi)/calcium alginate (Ca-Alg)/hydroxypropyl methylcellulose (HPMC) mucoadhesive-floating beads that provide time- and site-specific drug release of alfuzosin hydrochloride (Alf). Beads were prepared by simultaneous internal and external gelation method utilizing 32 factorial design as an experimental design; with two main factors evaluated for their influence on the prepared beads; the concentration of CaSi as floating aid (X1) and the percentage of HPMC as viscosity enhancer and mucoadhesive polymer (X2), each of them was tested in three levels. Developed formulations were evaluated for yield, entrapment efficiency, particle size, surface topography, and buoyancy. Differential scanning calorimetry, Fourier transform infrared spectroscopy, in vitro drug release, as well as in vitro mucoadhesion using rat stomach mucosal membrane were also conducted. Percentage yield and entrapment efficiency ranged from 57.03% to 78.51% and from 49.78% to 83.26%, respectively. Statistical analysis using ANOVA proved that increasing the concentration of either CaSi or HPMC significantly increased the beads yield. Both CaSi and HPMC concentrations were found to significantly affect Alf release from the beads. Additionally, higher CaSi concentration significantly increased the beads diameter while HPMC concentration showed significant positive effect on the beads mucoadhesive properties. CaSi/Ca-Alg/HPMC beads represent simple floating-mucoadhesive gastroretentive system that could be useful in chronopharmacotherapy of benign prostatic hyperplasia.
Pharmaceutical Development and Technology | 2012
Tareq Youssef; Maha Fadel; Rania H. Fahmy; Kawser Kassab
Hypericin (HYP), a natural photosensitizer, has powerful photo-oxidizing ability, tumor-seeking characteristics, and minimal dark toxicity; nevertheless, it has proven high lipid solubility compared to its sparingly water soluble nature. Therefore, its formulation into solid lipid nanoparticles (SLNs) has attracted increasing attention as a potential drug-delivery carrier. Two HYP-loaded SLNs formulations were prepared utilizing microemulsion-based technique. Thereafter, the physicochemical properties of the formulations were investigated and evaluated. HYP-loaded SLNs showed spherical shape with mean particle size ranging from 200–300 nm for both formulations (FA and FB). The encapsulation efficiencies reached above 80% and FA showed significant higher encapsulation than FB (P < 0.05), also, the thermal analysis using differential scanning calorimetry (DSC) indicated good compatibility between hypericin and lipids forming the cores in both formulations. Spectroscopic measurements of the photostability study showed that hypericin encapsulation into SLNs improved its photostability, compared to free HYP in 0.1% ethanolic solution. However, photocytotoxicity studies on HepG2 cells revealed an evident inhibition of the photodynamic efficacy of HYP-loaded SLNs, compared to free HYP. In conclusion, although the elevated entrapment efficiency of HYP into SLNs increased its photostability, it decreased its phototoxicity which might be due to the quenching deactivation of HYP molecules resulting from SLN compactness and thickness structure.
Drug Development and Industrial Pharmacy | 2016
Carol Yousry; Rania H. Fahmy; Tamer Essam; Hanan M. El-Laithy; Seham A. Elkheshen
Abstract Context: A microbiological multidistrict-based survey from different Egyptian governorates was conducted to determine the most prevalent causative agents of ocular infections in the Egyptian population. Antibiotic sensitivity testing was then performed to identify the most potent antimicrobial agent. Vancomycin (VCM) proved the highest activity against gram-positive Staphylococcus bacteria, which are the most commonly isolated causative agents of ocular infection. However, topically applied VCM suffers from poor ocular bioavailability because of its high molecular weight and hydrophilicity. Objective: The aim of the present study was to develop VCM-loaded solid lipid nanoparticles (SLNs) using water-in-oil-in-water (W/O/W) double emulsion, solvent evaporation technique to enhance ocular penetration and prolong ophthalmic residence of VCM. Method: Two consecutive full factorial designs (24 followed by 32) were adopted to study the effect of different formulation and process parameters on SLN formulation. The lipid type and structure, polyvinyl alcohol (PVA) molecular weight and concentration, sonication time, as well as lipid:drug ratio were studied as independent variables. The formulated SLN formulae were evaluated for encapsulation efficiency (EE%), particle size (PS), and zeta potential as dependent variables. Results: The statistically-optimized SLN formula (1:1 ratio of glyceryltripalmitate:VCM with 1% low molecular weight PVA and 1 min sonication time) had average PS of 277.25 nm, zeta potential of −20.45, and 19.99% drug encapsulation. Scanning and transmission electron micrographs showed well-defined, spherical, homogenously distributed particles. Conclusion: The present study suggests that VCM incorporation into SLNs is successfully achievable; however, further studies with different nanoencapsulation materials and techniques would be valuable for improving VCM encapsulation.
International Journal of Pharmaceutics | 2014
Mina Ibrahim Tadros; Rania H. Fahmy
The current work aimed to develop novel composite sponges of chitosan (CH)-chondroitin sulfate (CS) as a low-density gastroretentive delivery system for lornoxicam (LOR). This triple anti-inflammatory therapy-loaded matrices are expected to expand and float upon contact with gastric fluids for prolonged times. CH and CS solutions (3%, w/w) were prepared, mixed in different ratios, lyophilized, coated with magnesium stearate and compressed. The CH:CS interpolymer complex (IPC) was evaluated via FT-IR, DSC, and XRD. The compressed-sponges were evaluated for appearance, structure, porosity, pore diameter, density, wetting-time, floating characteristics, adhesion-retention, and LOR-release. The gastroretentivity of the best achieved magnetite-loaded sponges was monitored in healthy volunteers via MRI. The interaction between CH (protonated amino groups) and CS (anionic carboxylate/sulfate groups) proved IPC formation. DSC and XRD studies confirmed loss of LOR crystallinity. The sponges possessed interconnecting porous-network structures. The porosity, mean pore diameter, and bulk density of CH:CS (10:3) IPC sponges were 11.779%, 25.4 nm, and 0.670 g/mL, respectively. They showed complete wetting within seconds, gradual size-expansion within minutes and prolonged adhesion for hours. Controlled LOR-release profiles were tailored over 12h to satisfy individual patient needs. Monitoring of sponges via MRI proved their gastroretentivity for at least 5h.
Pharmaceutical Development and Technology | 2012
Ahmed A. Aboelwafa; Rania H. Fahmy
Meloxicam (MLX) suffers from poor aqueous solubility leading to slow absorption following oral administration; hence, immediate release MLX tablet is unsuitable in the treatment of acute pain. This study aims to overcome such a drawback by increasing MLX solubility and dissolution using PEG solid dispersion (SD), then, to investigate the feasibility of incorporating the SD into orodispersible tablets (ODTs). A 23 full factorial design was employed to investigate the influence of three formulation variables on MLX ODTs. The selected factors: camphor (X1) as pore-forming material, and croscarmellose sodium (X2) as superdisintegrant, showed significant positive influence, while PEG content (X3) was proved to negatively affect both disintegration and wetting times. In addition, isomalt increased disintegration and wetting times when compared to mannitol as diluents. The pharmacokinetic assessment of the optimum ODT formulation in healthy human subjects proved that the faster MLX dissolution by using PEG solid dispersion at pH 6.8 resulted in more rapid absorption of MLX. The rate of absorption of MLX from ODT was significantly faster (p = 0.030) with a significantly higher peak plasma concentration (P = 0.037) when compared to the marketed immediate release MLX tablet with a mean oral disintegration time of 17 ± 3 s.
European Journal of Pharmaceutical Sciences | 2017
Carol Yousry; Seham A. Elkheshen; Hanan M. El-Laithy; Tamer Essam; Rania H. Fahmy
&NA; Ocular topically applied Vancomycin (VCM) suffers poor bioavailability due to its high molecular weight and hydrophilicity. In the present investigation, VCM‐loaded polymeric nanoparticles (PNPs) were developed aiming to enhance its ocular bioavailability through prolonging its release pattern and ophthalmic residence. PNPs were prepared utilizing double emulsion (W/O/O), solvent evaporation technique. 23 × 41 full factorial design was applied to evaluate individual and combined influences of polymer type, Eudragit® RS100, sonication time, and Span®80 concentration on PNPs particle size, encapsulation efficiency, and zeta potential. Further, the optimized formulae were incorporated in 1% Carbopol®‐based gel. In‐vivo evaluation of the optimized formulae was performed via Draize test followed by microbiological susceptibility testing on albino rabbits. Results revealed successful formulation of VCM‐loaded PNPs was achieved with particle sizes reaching 155 nm and up to 88% encapsulation. Draize test confirmed the optimized formulae as non‐irritating and safe for ophthalmic administration. Microbiological susceptibility testing confirmed prolonged residence, higher Cmax. with more than two folds increment in the AUC(0.25–24) of VCM‐PNPs over control groups. Thus, VCM‐loaded PNPs represent promising carriers with superior achievements for enhanced Vancomycin ophthalmic delivery over the traditional use of commercially available VCM parenteral powder after constitution into a solution by the ophthalmologists. Graphical abstract Figure. No caption available.
Pharmaceutical Development and Technology | 2014
Rania H. Fahmy; Shaimaa M. Badr-Eldin
Abstract Orally dissolving films (dissofilms) have gained increasing popularity and attention due to their ease of administration and avoidance of first pass metabolism. Ketotifen fumarate (KF) bioavailability is reported to be only ∼50% due to hepatic first-pass metabolism. Aiming to surmount this drawback and improve patients’ compliance, a 32 full factorial design was applied to formulate KF Orodispersible films, and to investigate the effects and interactions of the concentrations of the novel film former; Lycoat NG73® and the film modifier; maltodextrin (MDX) on the characteristics of the films prepared using solvent casting technique. The dissofilms were thoroughly evaluated regarding their weight uniformity, content uniformity, moisture uptake, in vivo mouth dissolving time (MDT) and their thermal behavior via differential scanning calorimetry. Statistical analysis revealed the significant influence of Lycoat NG73® concentration on percent elongation, percent KF dissolved after 5 min, and in vivo MDT, while MDX concentration had significant effect only on percent elongation. Further, storage of the optimal selected formula (15% Lycoat NG73 and 0% MDX) at 40 °C/75% relative humidity for 12 weeks caused no significant change in appearance, KF content or drug dissolution profile. Pharmacokinetic study revealed that the orally dissolving films showed significantly higher absorption extent than the reference marketed product, while no significant difference was observed for Cmax.
Egyptian Journal of Anaesthesia | 2017
Tarek Radwan; Rania H. Fahmy; Mohamed El Emady; Islam Reda
http://dx.doi.org/10.1016/j.egja.2017.08.004 1110-1849/ 2017 Publishing services by Elsevier B.V. on behalf of Egyptian Society of Anesthesiologists. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer review under responsibility of Egyptian Society of Anesthesiologists. ⇑ Corresponding author. E-mail addresses: [email protected] (T. Radwan), [email protected] (R. Fahmy), [email protected] (M. El Emady), dr.eslam_reda@hotmail. com (I. Reda). Tarek Radwan, Rania Fahmy ⇑, Mohamed El Emady, Islam Reda
Egyptian Journal of Anaesthesia | 2017
Tarek Radwan; Mohamed Awad; Rania H. Fahmy; Mohamed El Emady; Mohamed Arafa
Aging is known to result in diminished functional reserve across organ systems which when combined with age related diseases limit the patients ability to tolerate perioperative stress. Inadequate...