Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rania Siam is active.

Publication


Featured researches published by Rania Siam.


The EMBO Journal | 2000

Cell cycle regulator phosphorylation stimulates two distinct modes of binding at a chromosome replication origin

Rania Siam; Gregory T. Marczynski

In Caulobacter crescentus, the global response regulator CtrA controls chromosome replication and determines the fate of two different cell progenies. Previous studies proposed that CtrA represses replication by binding to five sites, designated [a–e], in the replication origin. We show that phosphorylated CtrA binds sites [a–e] with 35‐ to 100‐fold lower Kd values than unphosphorylated CtrA. CtrA phosphorylation stimulates two distinct modes of binding to the replication origin. Phosphorylation stimulates weak intrinsic protein–protein cooperation between half‐sites and does not stimulate CtrA–P binding unless protein–DNA contacts are made at both half‐sites. CtrA phosphorylation also stimulates cooperative binding between complete sites [a] and [b]. However, binding to each of the other CtrA‐binding sites [c], [d] and [e] is completely independent and suggests a modular organization of replication control by CtrA. We therefore propose a model where a phosphorelay targets separate biochemical activities inside the replication origin through both cooperative and independent CtrA‐binding sites.


PLOS ONE | 2014

Core Microbial Functional Activities in Ocean Environments Revealed by Global Metagenomic Profiling Analyses

Ari J. S. Ferreira; Rania Siam; João C. Setubal; Ahmed A. Moustafa; Ahmed Sayed; Felipe S. Chambergo; Adam Dawe; Hazem Sharaf; Amged Ouf; Intikhab Alam; Alyaa M. Abdel-Haleem; Heikki Lehvaslaiho; Eman Ramadan; André Antunes; Ulrich Stingl; John A. C. Archer; Boris R. Jankovic; Mitchell L. Sogin; Vladimir B. Bajic

Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the worlds oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light.


Virology Journal | 2011

Identification of novel conserved functional motifs across most Influenza A viral strains

Mahmoud ElHefnawi; Osama AlAidi; Nafisa Mohamed; Mona Kamar; Iman A. El-Azab; Suher Zada; Rania Siam

BackgroundInfluenza A virus poses a continuous threat to global public health. Design of novel universal drugs and vaccine requires a careful analysis of different strains of Influenza A viral genome from diverse hosts and subtypes. We performed a systematic in silico analysis of Influenza A viral segments of all available Influenza A viral strains and subtypes and grouped them based on host, subtype, and years isolated, and through multiple sequence alignments we extrapolated conserved regions, motifs, and accessible regions for functional mapping and annotation.ResultsAcross all species and strains 87 highly conserved regions (conservation percentage > = 90%) and 19 functional motifs (conservation percentage = 100%) were found in PB2, PB1, PA, NP, M, and NS segments. The conservation percentage of these segments ranged between 94 - 98% in human strains (the most conserved), 85 - 93% in swine strains (the most variable), and 91 - 94% in avian strains. The most conserved segment was different in each host (PB1 for human strains, NS for avian strains, and M for swine strains). Target accessibility prediction yielded 324 accessible regions, with a single stranded probability > 0.5, of which 78 coincided with conserved regions. Some of the interesting annotations in these regions included sites for protein-protein interactions, the RNA binding groove, and the proton ion channel.ConclusionsThe influenza virus has evolved to adapt to its host through variations in the GC content and conservation percentage of the conserved regions. Nineteen universal conserved functional motifs were discovered, of which some were accessible regions with interesting biological functions. These regions will serve as a foundation for universal drug targets as well as universal vaccine design.


Journal of Bacteriology | 2002

Conserved Response Regulator CtrA and IHF Binding Sites in the α-Proteobacteria Caulobacter crescentus and Rickettsia prowazekii Chromosomal Replication Origins

Ann Karen C. Brassinga; Rania Siam; William McSween; Herbert H. Winkler; David O. Wood; Gregory T. Marczynski

CzcR is the Rickettsia prowazekii homolog of the Caulobacter crescentus global response regulator CtrA. CzcR expression partially compensates for developmental defects in ctrA mutant C. crescentus cells, and CzcR binds to all five CtrA binding sites in the C. crescentus replication origin. Conversely, CtrA binds to five similar sites in the putative R. prowazekii replication origin (oriRp). Also, Escherichia coli IHF protein binds over a central CtrA binding site in oriRp. Therefore, CtrA and IHF regulatory proteins have similar binding patterns in both replication origins, and we propose that CzcR is a global cell cycle regulator in R. prowazekii.


Journal of Bacteriology | 2003

A Dual Binding Site for Integration Host Factor and the Response Regulator CtrA inside the Caulobacter crescentus Replication Origin

Rania Siam; Ann Karen C. Brassinga; Gregory T. Marczynski

The response regulator CtrA controls chromosome replication by binding to five sites, a, b, c, d, and e, inside the Caulobacter crescentus replication origin (Cori). In this study, we demonstrate that integration host factor (IHF) binds Cori over the central CtrA binding site c. Surprisingly, IHF and CtrA share DNA recognition sequences. Rather than promoting cooperative binding, IHF binding hinders CtrA binding to site c and nearby site d. Unlike other CtrA binding sites, DNA mutations in the CtrA c/IHF site uniquely impair autonomous Cori plasmid replication. These mutations also alter transcription from distant promoters more than 100 bp away. When the CtrA c/IHF site was deleted from the chromosome, these cells grew slowly and became selectively intolerant to a CtrA phosphor-mimic allele (D51E). Since CtrA protein concentration decreases during the cell cycle as IHF protein concentration increases, we propose a model in which IHF displaces CtrA in order to bend Cori and promote efficient chromosome replication.


Journal of Bacteriology | 2001

Conserved gene cluster at replication origins of the alpha-proteobacteria Caulobacter crescentus and Rickettsia prowazekii.

Ann Karen C. Brassinga; Rania Siam; Gregory T. Marczynski

A 30-kb region surrounding the replication origin in Caulobacter crescentus was analyzed. Comparison to the genome sequence of another alpha-proteobacterium, Rickettsia prowazekii, revealed a conserved cluster of genes (RP001, hemE, hemH, and RP883) that overlaps the established origin of replication in C. crescentus and the putative origin of replication in R. prowazekii. The genes flanking this cluster differ between these two organisms. We therefore propose that this conserved gene cluster can be used to identify the origin of replication in other alpha-proteobacteria.


Ecology and Evolution | 2013

Patterns of ecological specialization among microbial populations in the Red Sea and diverse oligotrophic marine environments

Luke R. Thompson; Chris Field; Tamara N. Romanuk; David Kamanda Ngugi; Rania Siam; Hamza El Dorry; Ulrich Stingl

Large swaths of the nutrient-poor surface ocean are dominated numerically by cyanobacteria (Prochlorococcus), cyanobacterial viruses (cyanophage), and alphaproteobacteria (SAR11). How these groups thrive in the diverse physicochemical environments of different oceanic regions remains poorly understood. Comparative metagenomics can reveal adaptive responses linked to ecosystem-specific selective pressures. The Red Sea is well-suited for studying adaptation of pelagic-microbes, with salinities, temperatures, and light levels at the extreme end for the surface ocean, and low nutrient concentrations, yet no metagenomic studies have been done there. The Red Sea (high salinity, high light, low N and P) compares favorably with the Mediterranean Sea (high salinity, low P), Sargasso Sea (low P), and North Pacific Subtropical Gyre (high light, low N). We quantified the relative abundance of genetic functions among Prochlorococcus, cyanophage, and SAR11 from these four regions. Gene frequencies indicate selection for phosphorus acquisition (Mediterranean/Sargasso), DNA repair and high-light responses (Red Sea/Pacific Prochlorococcus), and osmolyte C1 oxidation (Red Sea/Mediterranean SAR11). The unexpected connection between salinity-dependent osmolyte production and SAR11 C1 metabolism represents a potentially major coevolutionary adaptation and biogeochemical flux. Among Prochlorococcus and cyanophage, genes enriched in specific environments had ecotype distributions similar to nonenriched genes, suggesting that inter-ecotype gene transfer is not a major source of environment-specific adaptation. Clustering of metagenomes using gene frequencies shows similarities in populations (Red Sea with Pacific, Mediterranean with Sargasso) that belie their geographic distances. Taken together, the genetic functions enriched in specific environments indicate competitive strategies for maintaining carrying capacity in the face of physical stressors and low nutrient availability.


PLOS ONE | 2012

Unique prokaryotic consortia in geochemically distinct sediments from Red Sea Atlantis II and discovery deep brine pools.

Rania Siam; Ghada A. Mustafa; Hazem Sharaf; Ahmed Moustafa; Adham R. Ramadan; André Antunes; Vladimir B. Bajic; Ulrich Stingl; Nardine G. R. Marsis; Marco J. L. Coolen; Mitchell L. Sogin; Ari J. S. Ferreira; Hamza El Dorry

The seafloor is a unique environment, which allows insights into how geochemical processes affect the diversity of biological life. Among its diverse ecosystems are deep-sea brine pools - water bodies characterized by a unique combination of extreme conditions. The ‘polyextremophiles’ that constitute the microbial assemblage of these deep hot brines have not been comprehensively studied. We report a comparative taxonomic analysis of the prokaryotic communities of the sediments directly below the Red Sea brine pools, namely, Atlantis II, Discovery, Chain Deep, and an adjacent brine-influenced site. Analyses of sediment samples and high-throughput pyrosequencing of PCR-amplified environmental 16S ribosomal RNA genes (16S rDNA) revealed that one sulfur (S)-rich Atlantis II and one nitrogen (N)-rich Discovery Deep section contained distinct microbial populations that differed from those found in the other sediment samples examined. Proteobacteria, Actinobacteria, Cyanobacteria, Deferribacteres, and Euryarchaeota were the most abundant bacterial and archaeal phyla in both the S- and N-rich sections. Relative abundance-based hierarchical clustering of the 16S rDNA pyrotags assigned to major taxonomic groups allowed us to categorize the archaeal and bacterial communities into three major and distinct groups; group I was unique to the S-rich Atlantis II section (ATII-1), group II was characteristic for the N-rich Discovery sample (DD-1), and group III reflected the composition of the remaining sediments. Many of the groups detected in the S-rich Atlantis II section are likely to play a dominant role in the cycling of methane and sulfur due to their phylogenetic affiliations with bacteria and archaea involved in anaerobic methane oxidation and sulfate reduction.


The ISME Journal | 2015

Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea.

David Kamanda Ngugi; Jochen Blom; Intikhab Alam; Masmoon Rashid; Wail Ba-alawi; Guishan Zhang; Tyas I. Hikmawan; Yue Guan; André Antunes; Rania Siam; Hamza El Dorry; Vladimir B. Bajic; Ulrich Stingl

The bottom of the Red Sea harbors over 25 deep hypersaline anoxic basins that are geochemically distinct and characterized by vertical gradients of extreme physicochemical conditions. Because of strong changes in density, particulate and microbial debris get entrapped in the brine-seawater interface (BSI), resulting in increased dissolved organic carbon, reduced dissolved oxygen toward the brines and enhanced microbial activities in the BSI. These features coupled with the deep-sea prevalence of ammonia-oxidizing archaea (AOA) in the global ocean make the BSI a suitable environment for studying the osmotic adaptations and ecology of these important players in the marine nitrogen cycle. Using phylogenomic-based approaches, we show that the local archaeal community of five different BSI habitats (with up to 18.2% salinity) is composed mostly of a single, highly abundant Nitrosopumilus-like phylotype that is phylogenetically distinct from the bathypelagic thaumarchaea; ammonia-oxidizing bacteria were absent. The composite genome of this novel Nitrosopumilus-like subpopulation (RSA3) co-assembled from multiple single-cell amplified genomes (SAGs) from one such BSI habitat further revealed that it shares ∼54% of its predicted genomic inventory with sequenced Nitrosopumilus species. RSA3 also carries several, albeit variable gene sets that further illuminate the phylogenetic diversity and metabolic plasticity of this genus. Specifically, it encodes for a putative proline-glutamate ‘switch’ with a potential role in osmotolerance and indirect impact on carbon and energy flows. Metagenomic fragment recruitment analyses against the composite RSA3 genome, Nitrosopumilus maritimus, and SAGs of mesopelagic thaumarchaea also reiterate the divergence of the BSI genotypes from other AOA.


Scientific Reports | 2013

Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea Brine Pool

Yasmine M. Mohamed; Ahmed Sayed; Amged Ouf; Rania Siam

The Red Sea Atlantis II brine pool is an extreme environment that displays multiple harsh conditions such as high temperature, high salinity and high concentrations of multiple, toxic heavy metals. The survival of microbes in such an environment by utilizing resistant enzymes makes them an excellent source of extremophilic enzymes. We constructed a fosmid metagenomic library using DNA isolated from the deepest and most secluded layer of this pool. We report the isolation and biochemical characterization of an unusual esterase: EstATII. EstATII is thermophilic (optimum temperature, 65°C), halotolerant (maintains its activity in up to 4.5 M NaCl) and maintains at least 60% of its activity in the presence of a wide spectrum of heavy metals. The combination of biochemical characteristics of the Red Sea Atlantis II brine pool esterase, i.e., halotolerance, thermophilicity and resistance to heavy metals, makes it a potentially useful biocatalyst.

Collaboration


Dive into the Rania Siam's collaboration.

Top Co-Authors

Avatar

Vladimir B. Bajic

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amged Ouf

American University in Cairo

View shared research outputs
Top Co-Authors

Avatar

Ari J. S. Ferreira

American University in Cairo

View shared research outputs
Top Co-Authors

Avatar

André Antunes

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Intikhab Alam

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ulrich Stingl

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ahmed Sayed

American University in Cairo

View shared research outputs
Top Co-Authors

Avatar

Ghada A. Mustafa

American University in Cairo

View shared research outputs
Top Co-Authors

Avatar

Hamza El Dorry

American University in Cairo

View shared research outputs
Researchain Logo
Decentralizing Knowledge