Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rao Mukkavilli is active.

Publication


Featured researches published by Rao Mukkavilli.


Toxicology and Applied Pharmacology | 2014

Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis

Sushma R. Gundala; Chunhua Yang; Rao Mukkavilli; Rutugandha Paranjpe; Meera Brahmbhatt; Vaishali Pannu; Alice Cheng; Michelle D. Reid; Ritu Aneja

Dietary phytochemicals are excellent ROS-modulating agents and have been shown to effectively enhance ROS levels beyond toxic threshold in cancer cells to ensure their selective killing while leaving normal cells unscathed. Here we demonstrate that hydroxychavicol (HC), extracted and purified from Piper betel leaves, significantly inhibits growth and proliferation via ROS generation in human prostate cancer, PC-3 cells. HC perturbed cell-cycle kinetics and progression, reduced clonogenicity and mediated cytotoxicity by ROS-induced DNA damage leading to activation of several pro-apoptotic molecules. In addition, HC treatment elicited a novel autophagic response as evidenced by the appearance of acidic vesicular organelles and increased expression of autophagic markers, LC3-IIb and beclin-1. Interestingly, quenching of ROS with tiron, an antioxidant, offered significant protection against HC-induced inhibition of cell growth and down regulation of caspase-3, suggesting the crucial role of ROS in mediating cell death. The collapse of mitochondrial transmembrane potential by HC further revealed the link between ROS generation and induction of caspase-mediated apoptosis in PC-3 cells. Our data showed remarkable inhibition of prostate tumor xenografts by ~72% upon daily oral administration of 150mg/kg bw HC by quantitative tumor volume measurements and non-invasive real-time bioluminescent imaging. HC was well-tolerated at this dosing level without any observable toxicity. This is the first report to demonstrate the anti-prostate cancer efficacy of HC in vitro and in vivo, which is perhaps attributable to its selective prooxidant activity to eliminate cancer cells thus providing compelling grounds for future preclinical studies to validate its potential usefulness for prostate cancer management.


European Journal of Pharmaceutical Sciences | 2014

In vitro metabolism, disposition, preclinical pharmacokinetics and prediction of human pharmacokinetics of DNDI-VL-2098, a potential oral treatment for Visceral Leishmaniasis

Rao Mukkavilli; Jakir Pinjari; Bhavesh H. Patel; Shankar Sengottuvelan; Subodh Mondal; Ajit Gadekar; Manas Verma; Jignesh Patel; Lavanya Pothuri; Gopu Chandrashekar; Prabhakar Koiram; Tanukrishnan Harisudhan; Ansari Moinuddin; Delphine Launay; Nimish Vachharajani; Vikram Ramanathan; Denis Martin

The in vitro metabolism and in vivo pharmacokinetic (PK) properties of DNDI-VL-2098, a potential oral agent for Visceral Leishmaniasis (VL) were studied and used to predict its human pharmacokinetics. DNDI-VL-2098 showed a low solubility (10μM) and was highly permeable (>200nm/s) in the Caco-2 model. It was stable in vitro in liver microsomes and hepatocytes and no metabolite was detectable in circulating plasma from dosed animals suggesting very slow, if any, metabolism of the compound. DNDI-VL-2098 was moderate to highly bound to plasma proteins across the species tested (94-98%). DNDI-VL-2098 showed satisfactory PK properties in mouse, hamster, rat and dog with a low blood clearance (<15% of hepatic blood flow except hamster), a volume of distribution of about 3 times total body water, acceptable half-life (1-6h across the species) and good oral bioavailability (37-100%). Allometric scaling of the preclinical PK data to human gave a blood half-life of approximately 20h suggesting that the compound could be a once-a-day drug. Based on the above assumptions, the minimum efficacious dose predicted for a 50kg human was 150mg and 300mg, using efficacy results in the mouse and hamster, respectively.


PLOS ONE | 2014

Modulation of Cytochrome P450 Metabolism and Transport across Intestinal Epithelial Barrier by Ginger Biophenolics

Rao Mukkavilli; Sushma R. Gundala; Chunhua Yang; Shashikiran Donthamsetty; Guilherme Cantuaria; Gajanan R. Jadhav; Subrahmanyam Vangala; Michelle D. Reid; Ritu Aneja

Natural and complementary therapies in conjunction with mainstream cancer care are steadily gaining popularity. Ginger extract (GE) confers significant health-promoting benefits owing to complex additive and/or synergistic interactions between its bioactive constituents. Recently, we showed that preservation of natural “milieu” confers superior anticancer activity on GE over its constituent phytochemicals, 6-gingerol (6G), 8-gingerol (8G), 10-gingerol (10G) and 6-shogaol (6S), through enterohepatic recirculation. Here we further evaluate and compare the effects of GE and its major bioactive constituents on cytochrome P450 (CYP) enzyme activity in human liver microsomes by monitoring metabolites of CYP-specific substrates using LC/MS/MS detection methods. Our data demonstrate that individual gingerols are potent inhibitors of CYP isozymes, whereas GE exhibits a much higher half-maximal inhibition value, indicating no possible herb-drug interactions. However, GEs inhibition of CYP1A2 and CYP2C8 reflects additive interactions among the constituents. In addition, studies performed to evaluate transporter-mediated intestinal efflux using Caco-2 cells revealed that GE and its phenolics are not substrates of P-glycoprotein (Pgp). Intriguingly, however, 10G and 6S were not detected in the receiver compartment, indicating possible biotransformation across the Caco-2 monolayer. These data strengthen the notion that an interplay of complex interactions among ginger phytochemicals when fed as whole extract dictates its bioactivity highlighting the importance of consuming whole foods over single agents. Our study substantiates the need for an in-depth analysis of hepatic biotransformation events and distribution profiles of GE and its active phenolics for the design of safe regimens.


European Journal of Medicinal Chemistry | 2015

Aminothiazoles: Hit to lead development to identify antileishmanial agents.

Debnath Bhuniya; Rao Mukkavilli; Rahul Shivahare; Delphine Launay; Ravindra T. Dere; Anil Deshpande; Aditya Verma; Preeti Vishwakarma; Manjunath Moger; Ashok Pradhan; Hari N. Pati; Vadiraj S. Gopinath; Suman Gupta; Sunil K. Puri; Denis Martin

As part of Drugs for Neglected Diseases initiatives lead optimization program for the development of new chemical entities to treat visceral leishmaniasis (VL), a series of aminothiazoles were synthesized and screened for in vitro efficacy, solubility and microsomal stability. The primary aim of identifying a lead structure with sub-micromolar activity was achieved. Out of 43 compounds synthesized, 16 compounds showed in vitro activity at less than 1 μM against VL. Compound 32 showed excellent antileishmanial potency (IC50 = 3 nM) and had all the acceptable properties except for metabolic instability. Blocking the metabolic soft spots in compound 32, where the 4-methoxy pyridine substituent was replaced by 5-ethoxy group, led to compound 36 (IC50 = 280 nM) with improved stability. To understand the disposition of 36, in vivo pharmacokinetic study was conducted in a mouse model. Compound 36 showed high clearance (91 mL/min/kg); short half-life (0.48 h) after intravenous administration (1 mg/kg) and exposure (AUC0-24) following oral administration was 362 ng h/mL with absolute bioavailability of 8%. To summarize, 43 analogs were synthesized out of which 15 compounds showed very potent sub-nanomolar efficacy in in vitro systems but the liability of metabolic instability seemed to be the major challenge for this chemical class and remains to be addressed.


European Journal of Pharmaceutical Sciences | 2015

Noscapine recirculates enterohepatically and induces self-clearance

Rao Mukkavilli; Sushma R. Gundala; Chunhua Yang; Gajanan R. Jadhav; Subrahmanyam Vangala; Michelle D. Reid; Ritu Aneja

Noscapine (Nos), an antitussive benzylisoquinoline opium alkaloid, is a non-toxic tubulin-binding agent currently in Phase II clinical trials for cancer chemotherapy. While preclinical studies have established its tumor-inhibitory properties in various cancers, poor absorptivity and rapid first-pass metabolism producing several uncharacterized metabolites for efficacy, present an impediment in translating its efficacy in humans. Here we report novel formulations of Nos in combination with dietary agents like capsaicin (Cap), piperine (Pip), eugenol (Eu) and curcumin (Cur) known for modulating Phase I and II drug metabolizing enzymes. In vivo pharmacokinetic (PK), organ toxicity evaluation of combinations, microsomal stability and in vitro cytochrome P450 (CYP) inhibition effects of Nos, Cap and Pip using human liver microsomes were performed. Single-dose PK screening of combinations revealed that the relative exposure of Nos (2 μg h/mL) was enhanced by 2-fold (4 μg h/mL) by Cap and Pip and their plasma concentration-time profiles showed multiple peaking phenomena for Nos indicating enterohepatic recirculation or differential absorption from intestine. CYP inhibition studies confirmed that Nos, Cap and Pip are not potent CYP inhibitors (IC50>1 μM). Repeated oral dosing of Nos, Nos+Cap and Nos+Pip showed lower exposure (Cmax and AUClast) of Nos on day 7 compared to day 1. Nos Cmax decreased from 3087 ng/mL to 684 ng/mL and AUClast from 1024 ng h/mL to 508 ng h/mL. In presence of Cap and Pip, the decrease in Cmax and AUClast of Nos was similar. This may be due to potential enzyme induction leading to rapid clearance of Nos as the trend was observed in Nos alone group also. The lack of effect on intrinsic clearance of Nos suggests that the potential drug biotransformation modulators employed in this study did not contribute toward increased exposure of Nos on repeated dosing. We envision that Nos-induced enzyme induction could alter the therapeutic efficacy of co-administered drugs, hence emphasizing the need for strategic evaluation of the metabolism of Nos to reap its maximum efficacy.


Molecules | 2017

Absorption, Metabolic Stability, and Pharmacokinetics of Ginger Phytochemicals

Rao Mukkavilli; Chunhua Yang; Reenu Singh Tanwar; Ahmed Ghareeb; Latika Luthra; Ritu Aneja

We have previously demonstrated promising anticancer efficacy of orally-fed whole ginger extract (GE) in preclinical prostate models emphasizing the importance of preservation of the natural “milieu”. Essentially, GE primarily includes active ginger phenolics viz., 6-gingerol (6G), 8-gingerol (8G), 10-gingerol (10G), and 6-shogaol (6S). However, the druglikeness properties of active GE phenolics like solubility, stability, and metabolic characteristics are poorly understood. Herein, we determined the physicochemical and biochemical properties of GE phenolics by conducting in vitro assays and mouse pharmacokinetic studies with and without co-administration of ketoconazole (KTZ). GE phenolics showed low to moderate solubility in various pH buffers but were stable in simulated gastric and intestinal fluids, indicating their suitability for oral administration. All GE phenolics were metabolically unstable and showed high intrinsic clearance in mouse, rat, dog, and human liver microsomes. Upon oral administration of 250 mg/kg GE, sub-therapeutic concentrations of GE phenolics were observed. Treatment of plasma samples with β-glucuronidase (βgd) increased the exposure of all GE phenolics by 10 to 700-fold. Co-administration of KTZ with GE increased the exposure of free GE phenolics by 3 to 60-fold. Interestingly, when the same samples were treated with βgd, the exposure of GE phenolics increased by 11 to 60-fold, suggesting inhibition of phase I metabolism by KTZ but little effect on glucuronide conjugation. Correlating the in vitro and in vivo results, it is reasonable to conclude that phase II metabolism seems to be the predominant clearance pathway for GE phenolics. We present evidence that the first-pass metabolism, particularly glucuronide conjugation of GE phenolics, underlies low systemic exposure.


Drug Testing and Analysis | 2016

Assessment of in vitro metabolic stability, plasma protein binding, and pharmacokinetics of E‐ and Z‐guggulsterone in rat

Yashpal S. Chhonker; Hardik Chandasana; Rao Mukkavilli; Yarra Durga Prasad; Tulsankar Sachin Laxman; Subrahmanyam Vangala; Rabi Sankar Bhatta

Guggulsterone is a racemic mixture of two stereoisomers (E- and Z-), obtained from the gum resin of Commiphora mukul and it is marketed as an antihyperlipidemic drug. The aim of our study was to assess the in vitro and in vivo absorption, distribution, metabolism, and excretion (ADME) properties namely solubility, in vitro metabolism, plasma protein binding and oral pharmacokinetic studies of E- and Z-guggulsterone. In vitro metabolism experiments were performed by using rat liver and intestinal microsomes. In vitro intrinsic clearance (CLint ) was found to be 33.34 ± 0.51 and 39.23 ± 8.12 μL/min/mg protein in rat liver microsomes for E- and Z-isomers, respectively. Plasma protein binding was determined by equilibrium dialysis method and in vivo pharmacokinetic studies were performed in male Sprague Dawley (SD) rats. Both isomers were highly bound to rat plasma proteins (>95% bound). Plasma concentration of E- and Z-isomers decreased rapidly following oral administration and were eliminated from systemic circulation with a terminal half-life of 0.63 ± 0.25 and 0.74 ± 0.35 h, respectively. The clearance (CL) for E-isomer was 2.79 ± 0.73 compared to 3.01 ± 0.61 L/h/kg for Z-isomer, indicating no significant difference (student t test; p <0.05) in their elimination.The pharmacokinetics of both isomers was characterized by extensive hepatic metabolism as seen with rat liver microsomes with high clearance and low systemic availability in rats. In brief, first-pass metabolism seems to be responsible factor for low bioavailability of guggulsterone. Copyright


Current Pharmaceutical Biotechnology | 2018

Evaluation of Drug Transport in MDCKII-Wild Type, MDCKII-MDR1, MDCKII-BCRP and Caco-2 Cell Lines

Rao Mukkavilli; Gajanan R. Jadhav; Subrahmanyam Vangala

BACKGROUND Drug transporters function as gatekeepers and modulate drug access into body and various tissues. Thus, a thorough and precise understanding of transporter liability for compound uptake and efflux is critical during drug development. METHODS In the present study, we assessed the apparent permeability (Papp) and compared efflux ratio of various compounds in stably transfected Madin-Darby Canine Kidney (MDCKII) cells overexpressing human P-gp (MDCKII-MDR1), human BCRP (MDCKII-BCRP), wild-type (MDCKII-WT), and Caco-2 cell monolayers. RESULTS We observed that quinidine, a substrate for MDR1 transporter, showed efflux ratio (Papp B-A/ Papp A-B) of 838 in MDCKII-MDR1 cells which plummeted to 14 in presence of verapamil, a known inhibitor of MDR1. With MDCKII-WT cells, Papp of quinidine dropped from 2 to 1, in the presence of verapamil. Caco-2 cells showed a diminutive decrease in efflux ratio of quinidine from 2.5 to 1.6 by verapamil. Prazosin and dantrolene were evaluated in MDCKII-BCRP cells and were found to have 80-fold higher efflux ratio compared to MDCKII-WT cells. In Caco-2 cells, prazosin and dantrolene showed efflux ratio of 4 and 2, respectively. Rhodamine-123, a fluorogenic probe substrate of MDR1 showed an efflux ratio of 4 in Caco-2 cells and BCRP substrate estrone-3-sulphate showed an efflux ratio of 7. In presence of BCRP inhibitor fumitremorgin-c, the efflux ratio of estrone-3-sulfate dropped to 1 in Caco-2 cells. CONCLUSION The very high efflux ratios of MDR1 and BCRP substrates in transfected MDCKII cells clearly demonstrate the potential usefulness of these models to provide more definitive data to evaluate the transporter involvement compared to Caco-2 or MDCKII-WT cells.


Carcinogenesis | 2015

Synergistic interactions among flavonoids and acetogenins in Graviola (Annona muricata) leaves confer protection against prostate cancer

Chunhua Yang; Sushma R. Gundala; Rao Mukkavilli; Subrahmanyam Vangala; Michelle D. Reid; Ritu Aneja


Carcinogenesis | 2014

Enterohepatic recirculation of bioactive ginger phytochemicals is associated with enhanced tumor growth-inhibitory activity of ginger extract

Sushma R. Gundala; Rao Mukkavilli; Chunhua Yang; Pooja Yadav; Vibha Tandon; Subrahmanyam Vangala; Satya Prakash; Ritu Aneja

Collaboration


Dive into the Rao Mukkavilli's collaboration.

Top Co-Authors

Avatar

Ritu Aneja

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

Chunhua Yang

Georgia State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aditya Verma

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debnath Bhuniya

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar

Dulal Panda

Indian Institute of Technology Bombay

View shared research outputs
Top Co-Authors

Avatar

Hardik Chandasana

Central Drug Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge