Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raoul Tibes is active.

Publication


Featured researches published by Raoul Tibes.


Lancet Oncology | 2015

Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study

Jean-Pierre Issa; Gail J. Roboz; David A. Rizzieri; Elias Jabbour; Wendy Stock; Casey O'Connell; Karen Yee; Raoul Tibes; Elizabeth A. Griffiths; Katherine Walsh; Naval Daver; Woonbok Chung; Sue Naim; Pietro Taverna; Aram Oganesian; Yong Hao; James N. Lowder; Mohammad Azab; Hagop M. Kantarjian

BACKGROUND Hypomethylating agents are used to treat cancers driven by aberrant DNA methylation, but their short half-life might limit their activity, particularly in patients with less proliferative diseases. Guadecitabine (SGI-110) is a novel hypomethylating dinucleotide of decitabine and deoxyguanosine resistant to degradation by cytidine deaminase. We aimed to assess the safety and clinical activity of subcutaneously given guadecitabine in patients with acute myeloid leukaemia or myelodysplastic syndrome. METHODS In this multicentre, open-label, phase 1 study, patients from nine North American medical centres with myelodysplastic syndrome or acute myeloid leukaemia that was refractory to or had relapsed after standard treatment were randomly assigned (1:1) to receive subcutaneous guadecitabine, either once-daily for 5 consecutive days (daily × 5), or once-weekly for 3 weeks, in a 28-day treatment cycle. Patients were stratified by disease. A 3 + 3 dose-escalation design was used in which we treated patients with guadecitabine doses of 3-125 mg/m(2) in separate dose-escalation cohorts. A twice-weekly treatment schedule was added to the study after a protocol amendment. The primary objective was to assess safety and tolerability of guadecitabine, determine the maximum tolerated and biologically effective dose, and identify the recommended phase 2 dose of guadecitabine. Safety analyses included all patients who received at least one dose of guadecitabine. Pharmacokinetic and pharmacodynamic analyses to determine the biologically effective dose included all patients for whom samples were available. This study is registered with ClinicalTrials.gov, number NCT01261312. FINDINGS Between Jan 4, 2011, and April 11, 2014, we enrolled and treated 93 patients: 35 patients with acute myeloid leukaemia and nine patients with myelodysplastic syndrome in the daily × 5 dose-escalation cohorts, 28 patients with acute myeloid leukaemia and six patients with myelodysplastic syndrome in the once-weekly dose-escalation cohorts, and 11 patients with acute myeloid leukaemia and four patients with myelodysplastic syndrome in the twice-weekly dose-escalation cohorts. The most common grade 3 or higher adverse events were febrile neutropenia (38 [41%] of 93 patients), pneumonia (27 [29%] of 93 patients), thrombocytopenia (23 [25%] of 93 patients), anaemia (23 [25%] of 93 patients), and sepsis (16 [17%] of 93 patients). The most common serious adverse events were febrile neutropenia (29 [31%] of 93 patients), pneumonia (26 [28%] of 93 patients), and sepsis (16 [17%] of 93 patients). Six of the 74 patients with acute myeloid leukaemia and six of the 19 patients with myelodysplastic syndrome had a clinical response to treatment. Two dose-limiting toxicities were noted in patients with myelodysplastic syndrome at 125 mg/m(2) daily × 5, thus the maximum tolerated dose in patients with myelodysplastic syndrome was 90 mg/m(2) daily × 5. The maximum tolerated dose was not reached in patients with acute myeloid leukaemia. Potent dose-related DNA demethylation occurred on the daily × 5 regimen, reaching a plateau at 60 mg/m(2) (designated as the biologically effective dose). INTERPRETATION Guadecitabine given subcutaneously at 60 mg/m(2) daily × 5 is well tolerated and is clinically and biologically active in patients with myelodysplastic syndrome and acute myeloid leukaemia. Guadecitabine 60 mg/m(2) daily × 5 is the recommended phase 2 dose, and these findings warrant further phase 2 studies. FUNDING Astex Pharmaceuticals, Stand Up To Cancer.


Journal of Clinical Oncology | 2010

A first-in-human phase I study to evaluate the pan-PI3K inhibitor GDC-0941 administered QD or BID in patients with advanced solid tumors.

D. D. Von Hoff; Patricia LoRusso; Raoul Tibes; Geoffrey I. Shapiro; Glen J. Weiss; Joseph A. Ware; J. Fredrickson; K. E. Mazina; G. G. Levy; Andrew J. Wagner

3501 Background: The PI3K-PTEN-AKT signaling pathway is deregulated in a wide variety of cancers. GDC-0941 is a potent and selective oral inhibitor of the class I PI3K with 3 nM IC50 for the p110-alpha subunit in vitro and 28 nM IC50 in a cell-based pAKT assay and demonstrates broad activity in breast, ovarian, lung, and prostate cancer models. METHODS A Phase I dose escalation study using a 3+3 design was initiated in patients (pts) with solid tumors. GDC-0941 was given on d1, followed by 1 wk washout to study single-dose PK and PD markers. GDC-0941 was then administered qd on a 3 wk on, 1 wk off, schedule. Steady-state PK and PD were evaluated after 1 wk of continuous dosing. A separate concurrent dose-escalation arm with bid dosing was initiated after the third qd cohort. RESULTS Nineteen pts have been enrolled in 5 successive dose-escalation cohorts in the qd arm with dose levels up to 80 mg daily. Seven pts were enrolled in 2 cohorts in the bid arm at total daily doses of 60 and 80 mg. The most frequently reported drug-related AEs were Grade 1/2 nausea, fatigue, diarrhea, peripheral edema, and dysgeusia; no drug related grade >3 events have been reported. PK data suggest dose-proportional increases in Cmax and AUC. Potential signs of anti-tumor activity have been observed with a soft tissue sarcoma pt on-study for >176 days with stable disease (30 mg qd), an ovarian cancer pt with an on-study 2.8-fold decrease in CA-125 response to normal levels (30 mg bid) and a pt with endometrial cancer with a decrease in tumor FDG-PET uptake (80 mg qd). CONCLUSIONS GDC-0941 is generally well-tolerated with potential signs of anti-tumor activity. Preliminary PK data suggest dose-proportional increases in exposure over the dose levels evaluated. Dose-escalation on both the qd and bid schedules continues with updated data to be presented. [Table: see text].


Blood | 2012

RNAi screening of the kinome with cytarabine in leukemias

Raoul Tibes; James M Bogenberger; Leena Chaudhuri; R. Tanner Hagelstrom; Donald Chow; Megan E. Buechel; Irma M. Gonzales; Tim Demuth; James L. Slack; Ruben A. Mesa; Esteban Braggio; Hongwei H. Yin; Shilpi Arora; David O. Azorsa

To identify rational therapeutic combinations with cytarabine (Ara-C), we developed a high-throughput, small-interference RNA (siRNA) platform for myeloid leukemia cells. Of 572 kinases individually silenced in combination with Ara-C, silencing of 10 (1.7%) and 8 (1.4%) kinases strongly increased Ara-C activity in TF-1 and THP-1 cells, respectively. The strongest molecular concepts emerged around kinases involved in cell-cycle checkpoints and DNA-damage repair. In confirmatory siRNA assays, inhibition of WEE1 resulted in more potent and universal sensitization across myeloid cell lines than siRNA inhibition of PKMYT1, CHEK1, or ATR. Treatment of 8 acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and chronic myeloid leukemia (CML) cell lines with commercial and the first-in-class clinical WEE1 kinase inhibitor MK1775 confirmed sensitization to Ara-C up to 97-fold. Ex vivo, adding MK1775 substantially reduced viability in 13 of 14 AML, CML, and myelodysplastic syndrome patient samples compared with Ara-C alone. Maximum sensitization occurred at lower to moderate concentrations of both drugs. Induction of apoptosis was increased using a combination of Ara-C and MK1775 compared with using either drug alone. WEE1 is expressed in primary AML, ALL, and CML specimens. Data from this first siRNA-kinome sensitizer screen suggests that inhibiting WEE1 in combination with Ara-C is a rational combination for the treatment of myeloid and lymphoid leukemias.


Clinical Cancer Research | 2015

Genome-Wide Analysis Uncovers Novel Recurrent Alterations in Primary Central Nervous System Lymphomas

Esteban Braggio; Scott Van Wier; Juhi Ojha; Ellen D. McPhail; Yan W. Asmann; Jan B. Egan; Jackline Ayres Da Silva; David Schiff; M. Beatriz S. Lopes; Paul A. Decker; Riccardo Valdez; Raoul Tibes; Bruce W. Eckloff; Thomas E. Witzig; A. Keith Stewart; Rafael Fonseca; Brian Patrick O'Neill

Purpose: Primary central nervous system lymphoma (PCNSL) is an aggressive non-Hodgkin lymphoma confined to the central nervous system. Whether there is a PCNSL-specific genomic signature and, if so, how it differs from systemic diffuse large B-cell lymphoma (DLBCL) is uncertain. Experimental Design: We performed a comprehensive genomic study of tumor samples from 19 immunocompetent PCNSL patients. Testing comprised array-comparative genomic hybridization and whole exome sequencing. Results: Biallelic inactivation of TOX and PRKCD was recurrently found in PCNSL but not in systemic DLBCL, suggesting a specific role in PCNSL pathogenesis. In addition, we found a high prevalence of MYD88 mutations (79%) and CDKN2A biallelic loss (60%). Several genes recurrently affected in PCNSL were common with systemic DLBCL, including loss of TNFAIP3, PRDM1, GNA13, TMEM30A, TBL1XR1, B2M, CD58, activating mutations of CD79B, CARD11, and translocations IgH-BCL6. Overall, B-cell receptor/Toll-like receptor/NF-κB pathways were altered in >90% of PNCSL, highlighting its value for targeted therapeutic approaches. Furthermore, integrated analysis showed enrichment of pathways associated with immune response, proliferation, apoptosis, and lymphocyte differentiation. Conclusions: In summary, genome-wide analysis uncovered novel recurrent alterations, including TOX and PRKCD, helping to differentiate PCNSL from systemic DLBCL and related lymphomas. Clin Cancer Res; 21(17); 3986–94. ©2015 AACR.


Leukemia | 2014

BCL-2 family proteins as 5-Azacytidine-sensitizing targets and determinants of response in myeloid malignancies

James M Bogenberger; Steven M. Kornblau; William E. Pierceall; Ryan Lena; D. Chow; Chang-Xin Shi; J Mantei; Gregory J. Ahmann; Irma M. Gonzales; A. Choudhary; Riccardo Valdez; John Camoriano; Veena Fauble; Rodger Tiedemann; Yihua Qiu; Kevin R. Coombes; Michael H. Cardone; Esteban Braggio; Hongwei Yin; David O. Azorsa; Ruben A. Mesa; A. K. Stewart; Raoul Tibes

Synergistic molecular vulnerabilities enhancing hypomethylating agents in myeloid malignancies have remained elusive. RNA-interference drug modifier screens identified antiapoptotic BCL-2 family members as potent 5-Azacytidine-sensitizing targets. In further dissecting BCL-XL, BCL-2 and MCL-1 contribution to 5-Azacytidine activity, siRNA silencing of BCL-XL and MCL-1, but not BCL-2, exhibited variable synergy with 5-Azacytidine in vitro. The BCL-XL, BCL-2 and BCL-w inhibitor ABT-737 sensitized most cell lines more potently compared with the selective BCL-2 inhibitor ABT-199, which synergized with 5-Azacytidine mostly at higher doses. Ex vivo, ABT-737 enhanced 5-Azacytidine activity across primary AML, MDS and MPN specimens. Protein levels of BCL-XL, BCL-2 and MCL-1 in 577 AML patient samples showed overlapping expression across AML FAB subtypes and heterogeneous expression within subtypes, further supporting a concept of dual/multiple BCL-2 family member targeting consistent with RNAi and pharmacologic results. Consequently, silencing of MCL-1 and BCL-XL increased the activity of ABT-199. Functional interrogation of BCL-2 family proteins by BH3 profiling performed on patient samples significantly discriminated clinical response versus resistance to 5-Azacytidine-based therapies. On the basis of these results, we propose a clinical trial of navitoclax (clinical-grade ABT-737) combined with 5-Azacytidine in myeloid malignancies, as well as to prospectively validate BH3 profiling in predicting 5-Azacytidine response.


Blood | 2015

An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults.

Michael R. Savona; Luca Malcovati; Rami S. Komrokji; Ramon V. Tiu; Tariq I. Mughal; Attilio Orazi; Jean-Jacques Kiladjian; Eric Padron; Eric Solary; Raoul Tibes; Mario Cazzola; Ruben A. Mesa; Jaroslaw P. Maciejewski; Pierre Fenaux; Guillermo Garcia-Manero; Aaron T. Gerds; Guillermo Sanz; Charlotte M. Niemeyer; Francisco Cervantes; Ulrich Germing; Nicholas C.P. Cross; Alan F. List

Myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN) are hematologically diverse stem cell malignancies sharing phenotypic features of both myelodysplastic syndromes and myeloproliferative neoplasms. There are currently no standard treatment recommendations for most adult patients with MDS/MPN. To optimize efforts to improve the management and disease outcomes, it is essential to identify meaningful clinical and biologic end points and standardized response criteria for clinical trials. The dual dysplastic and proliferative features in these stem cell malignancies define their uniqueness and challenges. We propose response assessment guidelines to harmonize future clinical trials with the principal objective of establishing suitable treatment algorithms. An international panel comprising laboratory and clinical experts in MDS/MPN was established involving 3 independent academic MDS/MPN workshops (March 2013, December 2013, and June 2014). These recommendations are the result of this collaborative project sponsored by the MDS Foundation.


Lancet Oncology | 2017

Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1–2 study

Alexander E. Perl; Jessica K. Altman; Jorge Cortes; Catherine C. Smith; Mark R. Litzow; Maria R. Baer; David F. Claxton; Harry P. Erba; Stan Gill; Stuart L. Goldberg; Joseph G. Jurcic; Richard A. Larson; Chaofeng Liu; Ellen K. Ritchie; Gary J. Schiller; Alexander Spira; Stephen A. Strickland; Raoul Tibes; Celalettin Ustun; Eunice S. Wang; Robert K. Stuart; Christoph Röllig; Andreas Neubauer; Giovanni Martinelli; Erkut Bahceci; Mark Levis

Background Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutations are common in acute myeloid leukemia (AML) and are associated with rapid relapse and short survival. In relapsed/refractory (R/R) AML, the clinical benefit of FLT3 inhibitors has been limited by rapid generation of resistance mutations, especially FLT3-D835. Gilteritinib is a potent, highly selective oral FLT3/AXL inhibitor with preclinical activity against FLT3-ITD and FLT3-D835 mutations. The aim of this Phase 1/2 study was to assess the safety, tolerability, and pharmacokinetic (PK) effects of gilteritinib in FLT3 mutation-positive (FLT3mut+) R/R AML. Methods This ongoing pharmacodynamic-driven Phase 1/2 trial (NCT02014558) enrolled subjects from October 2013 to August 2015 who were aged ≥18 years and were either refractory to induction therapy or had relapsed after achieving remission with prior therapy. Subjects were enrolled in one of seven dose-escalation or dose-expansion cohorts that were assigned to receive once-daily doses of oral gilteritinib (20, 40, 80, 120, 200, 300, or 450 mg). Cohort expansion was based on safety/tolerability, FLT3 inhibition in correlative assays, and antileukemic activity; the 120 and 200 mg dose cohorts were further expanded to include FLT3mut+ patients only. Safety and tolerability, and PK effects were the primary endpoints; antileukemic response was the main secondary endpoint. Safety and tolerability were assessed by monitoring dose-limiting toxicities and treatment-emergent adverse events, and safety assessments (eg, clinical laboratory evaluations, electrocardiograms) in the Safety Analysis Set. Findings A total of 252 adults with R/R AML, including 58 with wild-type FLT3 and 194 with FLT3 mutations (FLT3-ITD, n=162; FLT3-D835, n=16; FLT3-ITD and -D835, n=13; other, n=3), received oral gilteritinib (20–450 mg) once daily in one of seven dose-escalation (n=23) or dose-expansion (n=229) cohorts. Gilteritinib was well tolerated in this heavily pretreated population; Grade 3 diarrhea and hepatic transaminase elevation limited dosing above 300 mg/d. The most common Grade 3/4 adverse events were febrile neutropenia (39%; n=97/252), anemia (24%; n=61/252), thromobocytopenia (13%; n=33/252), sepsis (11%; n=28/252), and pneumonia (11%; n=27/252). Serious adverse events in ≥5% of patients were febrile neutropenia (31%; n=78/252), progressive disease (17%; n=43/252), sepsis (14%; n=36/252), pneumonia (11%; n=27/252), and acute renal failure (10%; n=25/252), pyrexia (8%; n=21/252), bacteremia (6%; n=14/252), and respiratory failure (6%; n=14/252). Gilteritinib demonstrated consistent, potent inhibition of FLT3 phosphorylation at doses ≥80 mg/d in correlative assays. While responses were observed across all dose levels regardless of FLT3 mutation status (overall response rate [ORR]=40%), response rate was improved in FLT3mut+ patients at doses ≥80 mg/d (ORR=52%). Among patients with FLT3-ITD, the additional presence of FLT3-D835 did not alter response rate; patients with only FLT3-D835 responded less frequently. Interpretation Gilteritinib had a favorable safety profile and generated potent FLT3 inhibition leading to high rates of antileukemic responses in patients with FLT3mut+ R/R AML. These findings confirm that FLT3 is a high-value target in R/R AML and that long-term success of therapeutic FLT3 inhibition in AML is optimized by agents with potent, selective, and sustained activity against FLT3-ITD mutations and FLT3 tyrosine kinase domain mutations. Funding This study was funded by Astellas Pharma, Inc., by a National Cancer Institute Leukemia Specialized Program of Research Excellence grant (CA100632) awarded to Drs Mark Levis and Jorge Cortes, and by Associazione Italiana Ricerca sul Cancro awarded to Professor Giovanni Martinelli.


Haematologica | 2014

CHK1 and WEE1 inhibition combine synergistically to enhance therapeutic efficacy in acute myeloid leukemia ex vivo.

Leena Chaudhuri; Nicole D. Vincelette; Brian D. Koh; Ryan M. Naylor; Karen S. Flatten; Kevin L. Peterson; Amanda McNally; Ivana Gojo; Judith E. Karp; Ruben A. Mesa; Lisa Sproat; James M Bogenberger; Scott H. Kaufmann; Raoul Tibes

Novel combinations targeting new molecular vulnerabilities are needed to improve the outcome of patients with acute myeloid leukemia. We recently identified WEE1 kinase as a novel target in leukemias. To identify genes that are synthetically lethal with WEE1 inhibition, we performed a short interfering RNA screen directed against cell cycle and DNA repair genes during concurrent treatment with the WEE1 inhibitor MK1775. CHK1 and ATR, genes encoding two replication checkpoint kinases, were among the genes whose silencing enhanced the effects of WEE1 inhibition most, whereas CDK2 short interfering RNA antagonized MK1775 effects. Building on this observation, we examined the impact of combining MK1775 with selective small molecule inhibitors of CHK1, ATR and cyclin-dependent kinases. The CHK1 inhibitor MK8776 sensitized acute myeloid leukemia cell lines and primary leukemia specimens to MK1775 ex vivo, whereas smaller effects were observed with the MK1775/MK8776 combination in normal myeloid progenitors. The ATR inhibitor VE-821 likewise enhanced the antiproliferative effects of MK1775, whereas the cyclin-dependent kinase inhibitor roscovitine antagonized MK1775. Further studies showed that MK8776 enhanced MK1775-mediated activation of the ATR/CHK1 pathway in acute leukemia cell lines and ex vivo. These results indicate that combined cell cycle checkpoint interference with MK1775/MK8776 warrants further investigation as a potential treatment for acute myeloid leukemia.


Haematologica | 2015

An international MDS/MPN working group’s perspective and recommendations on molecular pathogenesis, diagnosis and clinical characterization of myelodysplastic/myeloproliferative neoplasms

Tariq I. Mughal; Nicholas C.P. Cross; Eric Padron; Ramon V. Tiu; Michael R. Savona; Luca Malcovati; Raoul Tibes; Rami S. Komrokji; Jean-Jacques Kiladjian; Guillermo Garcia-Manero; Attilio Orazi; Ruben A. Mesa; Jaroslaw P. Maciejewski; Pierre Fenaux; Ghulam J. Mufti; Eric Solary; Alan F. List

In the 2008 WHO classification, chronic myeloid malignancies that share both myelodysplastic and myeloproliferative features define the myelodysplastic/myeloproliferative group, which includes chronic myelomonocytic leukemia, juvenile myelomonocytic leukemia, atypical chronic myeloid leukemia, refractory anemia with ring sideroblasts and thrombocytosis, and myelodysplastic/myeloproliferative unclassified. With the notable exception of refractory anemia with ring sideroblasts and thrombocytosis, there is much overlap among the various subtypes at the molecular and clinical levels, and a better definition of these entities, an understanding of their biology and an identification of subtype-specific molecular or cellular markers are needed. To address some of these challenges, a panel comprised of laboratory and clinical experts in myelodysplastic/myeloproliferative was established, and four independent academic MDS/MPN workshops were held on: 9th March 2013, in Miami, Florida, USA; 6th December 2013, in New Orleans, Louisiana, USA; 13th June 2014 in Milan, Italy; and 5th December 2014 in San Francisco, USA. During these meetings, the current understanding of these malignancies and matters of biology, diagnosis and management were discussed. This perspective and the recommendations on molecular pathogenesis, diagnosis and clinical characterization for adult onset myelodysplastic/myeloproliferative is the result of a collaborative project endorsed and supported by the MDS Foundation.


Journal of the National Cancer Institute | 2014

Synergistic Targeting of AML Stem/Progenitor Cells With IAP Antagonist Birinapant and Demethylating Agents

Bing Z. Carter; Po Yee Mak; Duncan H. Mak; Yuexi Shi; Yihua Qiu; James M Bogenberger; Hong Mu; Raoul Tibes; Hui Yao; Kevin R. Coombes; Rodrigo Jacamo; Teresa McQueen; Steven M. Kornblau; Michael Andreeff

BACKGROUND Acute myeloid leukemia (AML) therapy has limited long-term efficacy because patients frequently develop disease relapse because of the inability of standard chemotherapeutic agents to target AML stem/progenitor cells. Here, we identify deregulated apoptotic components in AML stem/progenitor cells and investigate the individual and combinatorial effects of the novel inhibitor of apoptosis (IAP) protein antagonist and second mitochondrial-derived activator of caspases (SMAC) mimetic birinapant and demethylating epigenetic modulators. METHODS Protein expression was measured by reversed-phase protein array in AML patient (n = 511) and normal (n = 21) samples and by western blot in drug-treated cells. The antileukemic activity of birinapant and demethylating agents was assessed in vitro and in an in vivo AML mouse xenograft model (n = 10 mice per group). All statistical tests were two-sided. RESULTS Compared with bulk AML cells, CD34(+)38(-) AML stem/progenitors expressed increased cIAP1 and caspase-8 levels and decreased SMAC levels (one-way analysis of variance followed by Tukeys multiple comparison test, P < .001). Birinapant induced death receptor-/caspase-8-mediated apoptosis in AML cells, including in AML stem/progenitor cells, but not in normal CD34(+) cells. Demethylating agents modulated extrinsic apoptosis pathway components and, when combined with birinapant, were highly synergistic in vitro (combination index < 1), and also more effective in vivo (P < .001, by Student t test, for the median survival of birinapant plus 5-azacytadine vs birinapant alone or vs controls). CONCLUSIONS cIAP1, SMAC, and caspase-8 appear to play a role in AML stem cell survival, and synergistic targeting of these cells with birinapant and demethylating agents shows potential utility in leukemia therapy.

Collaboration


Dive into the Raoul Tibes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillermo Garcia-Manero

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge