Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raphael Bernier is active.

Publication


Featured researches published by Raphael Bernier.


Nature | 2012

Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations

Brian J. O’Roak; Laura Vives; Santhosh Girirajan; Emre Karakoc; Niklas Krumm; Bradley P. Coe; Roie Levy; Arthur Ko; Choli Lee; Joshua D. Smith; Emily H. Turner; Ian B. Stanaway; Benjamin Vernot; Maika Malig; Carl Baker; Beau Reilly; Joshua M. Akey; Elhanan Borenstein; Mark J. Rieder; Deborah A. Nickerson; Raphael Bernier; Jay Shendure; Evan E. Eichler

It is well established that autism spectrum disorders (ASD) have a strong genetic component; however, for at least 70% of cases, the underlying genetic cause is unknown. Under the hypothesis that de novo mutations underlie a substantial fraction of the risk for developing ASD in families with no previous history of ASD or related phenotypes—so-called sporadic or simplex families—we sequenced all coding regions of the genome (the exome) for parent–child trios exhibiting sporadic ASD, including 189 new trios and 20 that were previously reported. Additionally, we also sequenced the exomes of 50 unaffected siblings corresponding to these new (n = 31) and previously reported trios (n = 19), for a total of 677 individual exomes from 209 families. Here we show that de novo point mutations are overwhelmingly paternal in origin (4:1 bias) and positively correlated with paternal age, consistent with the modest increased risk for children of older fathers to develop ASD. Moreover, 39% (49 of 126) of the most severe or disruptive de novo mutations map to a highly interconnected β-catenin/chromatin remodelling protein network ranked significantly for autism candidate genes. In proband exomes, recurrent protein-altering mutations were observed in two genes: CHD8 and NTNG1. Mutation screening of six candidate genes in 1,703 ASD probands identified additional de novo, protein-altering mutations in GRIN2B, LAMC3 and SCN1A. Combined with copy number variant (CNV) data, these results indicate extreme locus heterogeneity but also provide a target for future discovery, diagnostics and therapeutics.


Nature | 2009

Autism genome-wide copy number variation reveals ubiquitin and neuronal genes

Joseph T. Glessner; Kai Wang; Guiqing Cai; Olena Korvatska; Cecilia E. Kim; Shawn Wood; Haitao Zhang; Annette Estes; Camille W. Brune; Jonathan P. Bradfield; Marcin Imielinski; Edward C. Frackelton; Jennifer Reichert; Emily L. Crawford; Jeffrey Munson; Patrick Sleiman; Rosetta M. Chiavacci; Kiran Annaiah; Kelly Thomas; Cuiping Hou; Wendy Glaberson; James H. Flory; Frederick G. Otieno; Maria Garris; Latha Soorya; Lambertus Klei; Joseph Piven; Kacie J. Meyer; Evdokia Anagnostou; Takeshi Sakurai

Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD cases and 1,409 healthy children of European ancestry who were genotyped with ∼550,000 single nucleotide polymorphism markers, in an attempt to comprehensively identify CNVs conferring susceptibility to ASDs. Positive findings were evaluated in an independent cohort of 1,336 ASD cases and 1,110 controls of European ancestry. Besides previously reported ASD candidate genes, such as NRXN1 (ref. 10) and CNTN4 (refs 11, 12), several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls (P = 9.5 × 10-3). Furthermore, CNVs within or surrounding genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2 and FBXO40, were affected by CNVs not observed in controls (P = 3.3 × 10-3). We also identified duplications 55 kilobases upstream of complementary DNA AK123120 (P = 3.6 × 10-6). Although these variants may be individually rare, they target genes involved in neuronal cell-adhesion or ubiquitin degradation, indicating that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD.


Nature Genetics | 2011

Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations

Brian J. O'Roak; Pelagia Deriziotis; Choli Lee; Laura Vives; Jerrod J. Schwartz; Santhosh Girirajan; Emre Karakoc; Alexandra P. MacKenzie; Sarah B. Ng; Carl Baker; Mark J. Rieder; Deborah A. Nickerson; Raphael Bernier; Simon E. Fisher; Jay Shendure; Evan E. Eichler

Evidence for the etiology of autism spectrum disorders (ASDs) has consistently pointed to a strong genetic component complicated by substantial locus heterogeneity. We sequenced the exomes of 20 individuals with sporadic ASD (cases) and their parents, reasoning that these families would be enriched for de novo mutations of major effect. We identified 21 de novo mutations, 11 of which were protein altering. Protein-altering mutations were significantly enriched for changes at highly conserved residues. We identified potentially causative de novo events in 4 out of 20 probands, particularly among more severely affected individuals, in FOXP1, GRIN2B, SCN1A and LAMC3. In the FOXP1 mutation carrier, we also observed a rare inherited CNTNAP2 missense variant, and we provide functional support for a multi-hit model for disease risk. Our results show that trio-based exome sequencing is a powerful approach for identifying new candidate genes for ASDs and suggest that de novo mutations may contribute substantially to the genetic etiology of ASDs.


Nature | 2009

Common genetic variants on 5p14.1 associate with autism spectrum disorders

Kai Wang; Haitao Zhang; Deqiong Ma; Maja Bucan; Joseph T. Glessner; Brett S. Abrahams; Daria Salyakina; Marcin Imielinski; Jonathan P. Bradfield; Patrick Sleiman; Cecilia E. Kim; Cuiping Hou; Edward C. Frackelton; Rosetta M. Chiavacci; Nagahide Takahashi; Takeshi Sakurai; Eric Rappaport; Clara M. Lajonchere; Jeffrey Munson; Annette Estes; Olena Korvatska; Joseph Piven; Lisa I. Sonnenblick; Ana I. Alvarez Retuerto; Edward I. Herman; Hongmei Dong; Ted Hutman; Marian Sigman; Sally Ozonoff; Ami Klin

Autism spectrum disorders (ASDs) represent a group of childhood neurodevelopmental and neuropsychiatric disorders characterized by deficits in verbal communication, impairment of social interaction, and restricted and repetitive patterns of interests and behaviour. To identify common genetic risk factors underlying ASDs, here we present the results of genome-wide association studies on a cohort of 780 families (3,101 subjects) with affected children, and a second cohort of 1,204 affected subjects and 6,491 control subjects, all of whom were of European ancestry. Six single nucleotide polymorphisms between cadherin 10 (CDH10) and cadherin 9 (CDH9)—two genes encoding neuronal cell-adhesion molecules—revealed strong association signals, with the most significant SNP being rs4307059 (P = 3.4 × 10-8, odds ratio = 1.19). These signals were replicated in two independent cohorts, with combined P values ranging from 7.4 × 10-8 to 2.1 × 10-10. Our results implicate neuronal cell-adhesion molecules in the pathogenesis of ASDs, and represent, to our knowledge, the first demonstration of genome-wide significant association of common variants with susceptibility to ASDs.


Archives of General Psychiatry | 2012

A Multisite Study of the Clinical Diagnosis of Different Autism Spectrum Disorders

Catherine Lord; Eva Petkova; Vanessa Hus; Weijin Gan; Feihan Lu; Donna M. Martin; Opal Ousley; Lisa Guy; Raphael Bernier; Jennifer Gerdts; Molly Algermissen; Agnes H. Whitaker; James S. Sutcliffe; Zachary Warren; Ami Klin; Celine Saulnier; Ellen Hanson; Rachel Hundley; Judith Piggot; Eric Fombonne; Mandy Steiman; Judith H. Miles; Stephen M. Kanne; Robin P. Goin-Kochel; Sarika U. Peters; Edwin H. Cook; Stephen J. Guter; Jennifer Tjernagel; Lee Anne Green-Snyder; Somer L. Bishop

CONTEXT Best-estimate clinical diagnoses of specific autism spectrum disorders (autistic disorder, pervasive developmental disorder-not otherwise specified, and Asperger syndrome) have been used as the diagnostic gold standard, even when information from standardized instruments is available. OBJECTIVE To determine whether the relationships between behavioral phenotypes and clinical diagnoses of different autism spectrum disorders vary across 12 university-based sites. DESIGN Multisite observational study collecting clinical phenotype data (diagnostic, developmental, and demographic) for genetic research. Classification trees were used to identify characteristics that predicted diagnosis across and within sites. SETTING Participants were recruited through 12 university-based autism service providers into a genetic study of autism. PARTICIPANTS A total of 2102 probands (1814 male probands) between 4 and 18 years of age (mean [SD] age, 8.93 [3.5] years) who met autism spectrum criteria on the Autism Diagnostic Interview-Revised and the Autism Diagnostic Observation Schedule and who had a clinical diagnosis of an autism spectrum disorder. MAIN OUTCOME MEASURE Best-estimate clinical diagnoses predicted by standardized scores from diagnostic, cognitive, and behavioral measures. RESULTS Although distributions of scores on standardized measures were similar across sites, significant site differences emerged in best-estimate clinical diagnoses of specific autism spectrum disorders. Relationships between clinical diagnoses and standardized scores, particularly verbal IQ, language level, and core diagnostic features, varied across sites in weighting of information and cutoffs. CONCLUSIONS Clinical distinctions among categorical diagnostic subtypes of autism spectrum disorders were not reliable even across sites with well-documented fidelity using standardized diagnostic instruments. Results support the move from existing subgroupings of autism spectrum disorders to dimensional descriptions of core features of social affect and fixated, repetitive behaviors, together with characteristics such as language level and cognitive function.


Cell | 2014

Disruptive CHD8 mutations define a subtype of autism early in development.

Raphael Bernier; Christelle Golzio; Bo Xiong; Holly A.F. Stessman; Bradley P. Coe; Osnat Penn; Kali Witherspoon; Jennifer Gerdts; Carl Baker; Anneke T. Vulto-van Silfhout; Janneke H M Schuurs-Hoeijmakers; Marco Fichera; Paolo Bosco; Serafino Buono; Antonino Alberti; Pinella Failla; Hilde Peeters; Jean Steyaert; Lisenka E.L.M. Vissers; Ludmila Francescatto; Mefford Hc; Jill A. Rosenfeld; Trygve E. Bakken; Brian J. O'Roak; Matthew Pawlus; Randall T. Moon; Jay Shendure; David G. Amaral; Ed Lein; Julia Rankin

Autism spectrum disorder (ASD) is a heterogeneous disease in which efforts to define subtypes behaviorally have met with limited success. Hypothesizing that genetically based subtype identification may prove more productive, we resequenced the ASD-associated gene CHD8 in 3,730 children with developmental delay or ASD. We identified a total of 15 independent mutations; no truncating events were identified in 8,792 controls, including 2,289 unaffected siblings. In addition to a high likelihood of an ASD diagnosis among patients bearing CHD8 mutations, characteristics enriched in this group included macrocephaly, distinct faces, and gastrointestinal complaints. chd8 disruption in zebrafish recapitulates features of the human phenotype, including increased head size as a result of expansion of the forebrain/midbrain and impairment of gastrointestinal motility due to a reduction in postmitotic enteric neurons. Our findings indicate that CHD8 disruptions define a distinct ASD subtype and reveal unexpected comorbidities between brain development and enteric innervation.


Brain and Cognition | 2007

EEG mu rhythm and imitation impairments in individuals with autism spectrum disorder

Raphael Bernier; Geraldine Dawson; Sara Jane Webb; Michael Murias

Imitation ability has consistently been shown to be impaired in individuals with autism. A dysfunctional execution/observation matching system has been proposed to account for this impairment. The EEG mu rhythm is believed to reflect an underlying execution/observation matching system. This study investigated evidence of differential mu rhythm attenuation during the observation, execution, and imitation of movements and examined its relation to behaviorally assessed imitation abilities. Fourteen high-functioning adults with autism spectrum disorder (ASD) and 15 IQ- and age-matched typical adults participated. On the behavioral imitation task, adults with ASD demonstrated significantly poorer performance compared to typical adults in all domains of imitation ability. On the EEG task, both groups demonstrated significant attenuation of the mu rhythm when executing an action. However, when observing movement, the individuals with ASD showed significantly reduced attenuation of the mu wave. Behaviorally assessed imitation skills were correlated with degree of mu wave attenuation during observation of movement. These findings suggest that there is execution/observation matching system dysfunction in individuals with autism and that this matching system is related to degree of impairment in imitation abilities.


PLOS Genetics | 2011

Relative Burden of Large CNVs on a Range of Neurodevelopmental Phenotypes

Santhosh Girirajan; Zoran Brkanac; Bradley P. Coe; Carl Baker; Laura Vives; Tiffany H. Vu; Neil Shafer; Raphael Bernier; Giovanni Battista Ferrero; Margherita Silengo; Stephen T. Warren; Carlos S. Moreno; Marco Fichera; Corrado Romano; Wendy H. Raskind; Evan E. Eichler

While numerous studies have implicated copy number variants (CNVs) in a range of neurological phenotypes, the impact relative to disease severity has been difficult to ascertain due to small sample sizes, lack of phenotypic details, and heterogeneity in platforms used for discovery. Using a customized microarray enriched for genomic hotspots, we assayed for large CNVs among 1,227 individuals with various neurological deficits including dyslexia (376), sporadic autism (350), and intellectual disability (ID) (501), as well as 337 controls. We show that the frequency of large CNVs (>1 Mbp) is significantly greater for ID–associated phenotypes compared to autism (p = 9.58×10−11, odds ratio = 4.59), dyslexia (p = 3.81×10−18, odds ratio = 14.45), or controls (p = 2.75×10−17, odds ratio = 13.71). There is a striking difference in the frequency of rare CNVs (>50 kbp) in autism (10%, p = 2.4×10−6, odds ratio = 6) or ID (16%, p = 3.55×10−12, odds ratio = 10) compared to dyslexia (2%) with essentially no difference in large CNV burden among dyslexia patients compared to controls. Rare CNVs were more likely to arise de novo (64%) in ID when compared to autism (40%) or dyslexia (0%). We observed a significantly increased large CNV burden in individuals with ID and multiple congenital anomalies (MCA) compared to ID alone (p = 0.001, odds ratio = 2.54). Our data suggest that large CNV burden positively correlates with the severity of childhood disability: ID with MCA being most severely affected and dyslexics being indistinguishable from controls. When autism without ID was considered separately, the increase in CNV burden was modest compared to controls (p = 0.07, odds ratio = 2.33).


Nature Genetics | 2015

Excess of rare, inherited truncating mutations in autism

Niklas Krumm; Tychele N. Turner; Carl Baker; Laura Vives; Kiana Mohajeri; Kali Witherspoon; Archana Raja; Bradley P. Coe; Holly A.F. Stessman; Zong Xiao He; Suzanne M. Leal; Raphael Bernier; Evan E. Eichler

To assess the relative impact of inherited and de novo variants on autism risk, we generated a comprehensive set of exonic single-nucleotide variants (SNVs) and copy number variants (CNVs) from 2,377 families with autism. We find that private, inherited truncating SNVs in conserved genes are enriched in probands (odds ratio = 1.14, P = 0.0002) in comparison to unaffected siblings, an effect involving significant maternal transmission bias to sons. We also observe a bias for inherited CNVs, specifically for small (<100 kb), maternally inherited events (P = 0.01) that are enriched in CHD8 target genes (P = 7.4 × 10−3). Using a logistic regression model, we show that private truncating SNVs and rare, inherited CNVs are statistically independent risk factors for autism, with odds ratios of 1.11 (P = 0.0002) and 1.23 (P = 0.01), respectively. This analysis identifies a second class of candidate genes (for example, RIMS1, CUL7 and LZTR1) where transmitted mutations may create a sensitized background but are unlikely to be completely penetrant.


Developmental Neuropsychology | 2005

Early Regression in Social Communication in Autism Spectrum Disorders: A CPEA Study

Rhiannon J. Luyster; Jennifer Richler; Susan Risi; Wan Ling Hsu; Geraldine Dawson; Raphael Bernier; Michelle Dunn; Susan Hepburn; Susan L. Hyman; William M. McMahon; Julie Goudie-Nice; Nancy J. Minshew; Sally J. Rogers; Marian Sigman; M. Anne Spence; Wendy A. Goldberg; Helen Tager-Flusberg; Fred R. Volkmar; Catherine Lord

In a multisite study of 351 children with autism spectrum disorders, 21 children with developmental delays, and 31 children with typical development, this study used caregiver interviews (i.e., the Autism Diagnostic Interview-Revised) at the time of entry into other research projects and follow-up telephone interviews designed for this project to describe the childrens early acquisition and loss of social-communication milestones. Children who had used words spontaneously and meaningfully and then stopped talking were described by their caregivers as showing more gestures, greater participation in social games, and better receptive language before the loss and fewer of these skills after the loss than other children with autism spectrum disorders. A significant minority of children with autism without word loss showed a very similar pattern of loss of social-communication skills, a pattern not observed in the children with developmental delays or typical development.

Collaboration


Dive into the Raphael Bernier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara Jane Webb

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Bradley P. Coe

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl Baker

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Emily Neuhaus

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge