Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raphaël Chouinard-Watkins is active.

Publication


Featured researches published by Raphaël Chouinard-Watkins.


Nutrition & Metabolism | 2011

Plasma incorporation, apparent retroconversion and β-oxidation of 13C-docosahexaenoic acid in the elderly.

Mélanie Plourde; Raphaël Chouinard-Watkins; Milène Vandal; Ying Zhang; Peter Lawrence; J. Thomas Brenna; Stephen C. Cunnane

BackgroundHigher fish or higher docosahexaenoic acid (DHA) intake normally correlates positively with higher plasma DHA level, but recent evidence suggests that the positive relationship between intake and plasma levels of DHA is less clear in the elderly.MethodsWe compared the metabolism of 13C-DHA in six healthy elderly (mean - 77 y old) and six young adults (mean - 27 y old). All participants were given a single oral dose of 50 mg of uniformly labelled 13C-DHA. Tracer incorporation into fatty acids of plasma triglycerides, free fatty acids, cholesteryl esters and phospholipids, as well as apparent retroconversion and β-oxidation of 13C-DHA were evaluated 4 h, 24 h, 7d and 28d later.ResultsPlasma incorporation and β-oxidation of 13C-DHA reached a maximum within 4 h in both groups, but 13C-DHA was transiently higher in all plasma lipids of the elderly 4 h to 28d later. At 4 h post-dose, 13C-DHA β-oxidation was 1.9 times higher in the elderly, but over 7d, cumulative β-oxidation of 13C-DHA was not different in the two groups (35% in the elderly and 38% in the young). Apparent retroconversion of 13C-DHA was well below 10% of 13C-DHA recovered in plasma at all time points, and was 2.1 times higher in the elderly 24 h and 7d after tracer intake.ConclusionsWe conclude that 13C-DHA metabolism changes significantly during healthy aging. Since DHA is a potentially important molecule in neuro-protection, these changes may be relevant to the higher vulnerability of the elderly to cognitive decline.


Prostaglandins Leukotrienes and Essential Fatty Acids | 2013

Docosahexaenoic acid homeostasis, brain aging and Alzheimer's disease: Can we reconcile the evidence?

Stephen C. Cunnane; Raphaël Chouinard-Watkins; Christian‐ Castellano; Pascale Barberger-Gateau

A crossroads has been reached on research into docosahexaenoic acid (DHA) and Alzheimers disease (AD). On the one hand, several prospective observational studies now clearly indicate a protective effect of higher fish and DHA intake against risk of AD. On the other hand, once AD is clinically evident, supplementation trials demonstrate essentially no benefit of DHA in AD. Despite apparently low DHA intake in AD, brain DHA levels are frequently the same as in controls, suggesting that low DHA intake results in low plasma DHA but does not necessarily reduce brain DHA in humans. Animal models involving dietary omega-3 fatty acid deficiency to deplete brain DHA may therefore not be appropriate in AD research. Studies in the healthy elderly suggest that DHA homeostasis changes during aging. Tracer methodology now permits estimation of DHA half-life in the human brain and whole body. Apolipoprotein E alleles have an important impact not only on AD but also on DHA homeostasis in humans. We therefore encourage further development of innovative approaches to the study of DHA metabolism and its role in human brain function. A better understanding of DHA metabolism in humans will hopefully help explain how higher habitual DHA intake protects against the risk of deteriorating cognition during aging and may eventually give rise to a breakthrough in the treatment of AD.


Nutrition | 2013

Stimulation of mild, sustained ketonemia by medium-chain triacylglycerols in healthy humans: Estimated potential contribution to brain energy metabolism

Alexandre Courchesne-Loyer; Mélanie Fortier; Jennifer Tremblay-Mercier; Raphaël Chouinard-Watkins; Maggie Roy; Scott Nugent; Christian-Alexandre Castellano; Stephen C. Cunnane

OBJECTIVE In humans consuming a normal diet, we investigated 1) the capacity of a medium-chain triacylglycerol (MCT) supplement to stimulate and sustain ketonemia, 2) ¹³C-β-hydroxybutyrate and ¹³C-trioctanoate metabolism, and 3) the theoretical contribution of the degree of ketonemia achieved to brain energy metabolism. METHODS Eight healthy adults (26 ± 1 y old) were given an MCT supplement for 4 wk (4 times/d; total of 20 g/d for 1 wk followed by 30 g/d for 3 wk). Ketones, glucose, triacylglycerols, cholesterol, free fatty acids, and insulin were measured over 8 h during two separate metabolic study days before and after MCT supplementation. Using isotope ratio mass spectroscopy, ¹³C-D-β-hydroxybutyrate and ¹³C-trioctanoate β-oxidation to ¹³CO₂ was measured over 12 h on the pre- and post-MCT metabolic study days. RESULTS On the post-MCT metabolic study day, plasma ketones (β-hydroxybutyrate plus acetoacetate) peaked at 476 μM, with a mean value throughout the study day of 290 μM. Post-MCT, ¹³C-trioctanoate β-oxidation was significantly lower 1 to 8 h later but higher 10 to 12 h later. MCT supplementation did not significantly alter ¹³C-D-β-hydroxybutyrate oxidation. CONCLUSIONS This MCT supplementation protocol was mildly and safely ketogenic and had no side effects in healthy humans on their regular diet. This degree of ketonemia is estimated to contribute up to 8% to 9% of brain energy metabolism.


The American Journal of Clinical Nutrition | 2014

Kinetics of 13C-DHA before and during fish-oil supplementation in healthy older individuals

Mélanie Plourde; Raphaël Chouinard-Watkins; Christine Rioux-Perreault; Mélanie Fortier; Marie Thuy Mai Dang; Marie-Julie Allard; Jennifer Tremblay-Mercier; Ying Zhang; Peter Lawrence; Marie-Claude Vohl; Patrice Perron; Dominique Lorrain; J. Thomas Brenna; Stephen C. Cunnane

BACKGROUND Docosahexaenoic acid (DHA) kinetics appear to change with intake, which is an effect that we studied in an older population by using uniformly carbon-13-labeled DHA ((13)C-DHA). OBJECTIVE We evaluated the influence of a fish-oil supplement over 5 mo on the kinetics of (13)C-DHA in older persons. DESIGN Thirty-four healthy, cognitively normal participants (12 men, 22 women) aged between 52 and 90 y were recruited. Two identical kinetic studies were performed, each with the use of a single oral dose of 40 mg (13)C-DHA. The first kinetic study was performed before participants started taking a 5-mo supplementation that provided 1.4 g DHA/d plus 1.8 g eicosapentaenoic acid (EPA)/d (baseline); the second study was performed during the final month of supplementation (supplement). In both kinetic studies, blood and breath samples were collected ≤8 h and weekly over 4 wk to analyze (13)C enrichment. RESULTS The time × supplement interaction for (13)C-DHA in the plasma was not significant, but there were separate time and supplement effects (P < 0.0001). The area under the curve for plasma (13)C-DHA was 60% lower while subjects were taking the supplement than at baseline (P < 0.0001). The uniformly carbon-13-labeled EPA concentration was 2.6 times as high 1 d posttracer while patients were taking the supplement as it was at baseline. The mean (±SEM) plasma (13)C-DHA half-life was 4.5 ± 0.4 d at baseline compared with 3.0 ± 0.2 d while taking the supplement (P < 0.0001). Compared with baseline, the mean whole-body half-life was 61% lower while subjects were taking the supplement. The loss of (13)C-DHA through β-oxidation to carbon dioxide labeled with carbon-13 increased from 0.085% of dose/h at baseline to 0.208% of dose/h while subjects were taking the supplement. CONCLUSIONS In older persons, a supplement of 3.2 g EPA + DHA/d increased β-oxidation of (13)C-DHA and shortened the plasma (13)C-DHA half-life. Therefore, when circulating concentrations of EPA and DHA are increased, more DHA is available for β-oxidation. This trial was registered at clinicaltrials.gov as NCT01577004.


Proceedings of the Nutrition Society | 2014

Ageing and apoE change DHA homeostasis: relevance to age-related cognitive decline.

Marie Hennebelle; Mélanie Plourde; Raphaël Chouinard-Watkins; Christian-Alexandre Castellano; Pascale Barberger-Gateau; Stephen C. Cunnane

Epidemiological studies fairly convincingly suggest that higher intakes of fatty fish and n-3 fatty acids are associated with reduced risk of Alzheimers disease (AD). DHA in plasma is normally positively associated with DHA intake. However, despite being associated with lower fish and DHA intake, unexpectedly, plasma (or brain) DHA is frequently not lower in AD. This review will highlight some metabolic and physiological factors such as ageing and apoE polymorphism that influence DHA homeostasis. Compared with young adults, blood DHA is often slightly but significantly higher in older adults without any age-related cognitive decline. Higher plasma DHA in older adults could be a sign that their fish or DHA intake is higher. However, our supplementation and carbon-13 tracer studies also show that DHA metabolism, e.g. transit through the plasma, apparent retroconversion and β-oxidation, is altered in healthy older compared with healthy young adults. ApoE4 increases the risk of AD, possibly in part because it too changes DHA homeostasis. Therefore, independent of differences in fish intake, changing DHA homeostasis may tend to obscure the relationship between DHA intake and plasma DHA which, in turn, may contribute to making older adults more susceptible to cognitive decline despite older adults having similar or sometimes higher plasma DHA than in younger adults. In conclusion, recent development of new tools such as isotopically labelled DHA to study DHA metabolism in human subjects highlights some promising avenues to evaluate how and why DHA metabolism changes during ageing and AD.


Nutrients | 2014

Fatty Acid Metabolism in Carriers of Apolipoprotein E Epsilon 4 Allele: Is It Contributing to Higher Risk of Cognitive Decline and Coronary Heart Disease?

Raphaël Chouinard-Watkins; Mélanie Plourde

Apolipoprotein E (ApoE) is a protein playing a pivotal role in lipid homeostasis since it regulates cholesterol, triglyceride and phospholipid metabolism in the blood and the brain. APOE gene regulates the expression of this protein and has three different alleles: ε2, ε3 and ε4. Carrying an APOE4 allele is recognised as a genetic risk factor of late-onset Alzheimer’s disease (LOAD) and coronary heart disease (CHD). Consuming fatty fish, rich in long chain omega-3 fatty acids (LC omega-3), seems to be associated with risk reduction of developing LOAD and CHD but this link seems not to hold in APOE4 carriers, at least in LOAD. In CHD trials, APOE4 carriers supplemented with LC omega-3 were categorized as differential responders to the treatment with regards to CHD risk markers. This is potentially because fatty acid metabolism is disturbed in APOE4 carriers compared to the non-carriers. More specifically, homeostasis of LC omega-3 is disrupted in carriers of APOE4 allele and this is potentially because they β-oxidize more LC omega-3 than the non-carriers. Therefore, there is a potential shift in fatty acid selection for β-oxidation towards LC omega-3 which are usually highly preserved for incorporation into cell membranes.


Prostaglandins Leukotrienes and Essential Fatty Acids | 2010

Higher plasma n-3 fatty acid status in the moderately healthy elderly in southern Québec: Higher fish intake or aging-related change in n-3 fatty acid metabolism?

Mélanie Fortier; Jennifer Tremblay-Mercier; Mélanie Plourde; Raphaël Chouinard-Watkins; Milène Vandal; Fabien Pifferi; Erika Freemantle; Stephen C. Cunnane

The elderly reportedly have a significantly higher % of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids in plasma and red cell lipids. However, these observations are from a few small studies and the health status of the elderly in these studies is for the most part unclear. Since the elderly are susceptible to cardiovascular and neurological illnesses that seem to be related in part to lower intake of n-3 fatty acids it seems paradoxical that their blood levels of EPA and DHA would be higher than in young adults. We report here plasma fatty acid profiles and their response to supplementation with two types of fish oils from several of our recent studies in the moderately healthy elderly. We define the moderately healthy elderly as those who were in good physical condition, had no cognitive decline and, if present, in whom hypothyroidism, hyperlipidemia and/or hypertension were well-controlled. As shown previously, we confirm the higher % EPA and % total n-3 fatty acids (but not DHA) in fasting plasma and extend these findings to include higher plasma concentrations (mg/L) of n-3 fatty acids as well. The EPA-predominant supplement raised DHA only in the young, whereas the DHA-predominant supplement raised EPA more in the young than in the elderly. The moderately healthy elderly clearly have higher plasma n-3 fatty acids but whether this reflects differences in intake versus aging-related changes in n-3 fatty acid metabolism remains to be elucidated.


Clinical Lipidology | 2015

Challenges to determining whether DHA can protect against age-related cognitive decline

Marie Hennebelle; Emilie Harbeby; Sébastien Tremblay; Raphaël Chouinard-Watkins; Fabien Pifferi; Mélanie Plourde; Philippe Guesnet; Stephen C. Cunnane

Abstract DHA, an omega-3 fatty acid, is an important constituent of brain membranes and has a key role in brain development and function. This review aims to highlight recent research on DHA’s role during age-related cognitive decline and Alzheimer’s disease. Animal and in vitro studies have provided some interesting mechanistic leads, especially on brain glucose metabolism, that may be involved in neuroprotection by DHA. However, results from human studies are more mitigated, perhaps due to changing DHA metabolism during aging. Recent innovative tools such as 13C-DHA for metabolic studies and 11C-DHA for PET provide interesting opportunities to study factors that affect DHA homeostasis during aging and to better understand whether and how to use DHA to delay or treat Alzheimer’s disease.


Journal of Nutrition | 2016

A Diet Rich in Docosahexaenoic Acid Restores Liver Arachidonic Acid and Docosahexaenoic Acid Concentrations in Mice Homozygous for the Human Apolipoprotein E ε4 Allele

Raphaël Chouinard-Watkins; Anthony Pinçon; Jean-Denis Coulombe; Riley Spencer; Laurence Massenavette; Mélanie Plourde

BACKGROUND Metabolism of long-chain polyunsaturated fatty acids (LC-PUFAs) is disturbed in carriers of the apolipoprotein E (APOE) ε4 allele (APOE4). More specifically, APOE4 carriers are lower responders to ω-3 (n-3) LC-PUFA supplementation; this might be because LC-PUFA transport into cells or β-oxidation is disturbed. However, high doses of dietary docosahexaenoic acid (DHA) seem to restore DHA homeostasis in APOE4 carriers, but the contribution of hepatic fatty acid (FA) transporters is unknown. OBJECTIVES With the use of mice carrying human APOE isoforms, we sought to investigate whether a DHA-rich diet could restore DHA homeostasis in APOE4 mice and whether this involved hepatic FA transporters. METHODS Male and female mice homozygous for the APOE ε2 allele, APOE ε3 allele (APOE3), and APOE4 were fed either a diet enriched with DHA (0.7 g DHA/100 g diet) or a control diet for 8 mo and were killed at 12 mo of age. Liver and plasma FA profiles were measured by GC, and FA transporter expression was evaluated by Western immunoblotting. RESULTS There was a significant genotype × diet interaction for hepatic concentrations of arachidonic acid (AA) and DHA (P = 0.005 and P = 0.002, respectively) and a trend toward an interaction for liver expression of fatty acid binding protein 1 (FABP1) (P-interaction = 0.05). APOE4 mice had 60-100% higher liver AA, DHA, and FABP1 than did APOE3 mice, but only when fed the control diet. Independent of diet, APOE4 mice had 20-30% lower plasma concentrations of AA and DHA than did APOE3 mice. Overall, mice fed the DHA diet had 50% lower concentrations of liver total FAs than did mice fed the control diet. CONCLUSIONS These findings in transgenic mice suggest that a long-term diet rich in DHA suppresses the APOE4-specific disturbances in hepatic transport and concentration of AA and DHA and also reduces hepatic total FA concentrations, regardless of genotype.


Oléagineux, Corps gras, Lipides | 2011

Does aging change docosahexaenoic acid homeostasis? Implications for the challenge to cognitive health in the elderly

Christian-Alexandre Castellano; Raphaël Chouinard-Watkins; J. Tom Brenna; Barbara J. Meyer; Stephen C. Cunnane

Cognitive health in the elderly is an increasingly important preoccupation for public health institutions globally. This preoccupation is all the more acute given the lack of effective medical treatment for the various types of cognitive decline associated with aging including ‘‘Alzheimer’s disease’’. Because the various forms of cognitive decline in the elderly are increasingly recognised as a heterogeneous conditions (Whitehouse et al., 2011), we prefer the general term aging-related cognitive decline (ARCD). Conditions linked to the metabolic syndrome, particularly insulin resistance and type 2 diabetes, are major risk factors for cognitive decline in the elderly (Hao et al., 2011). Since the metabolic syndrome is preventable at least in adolescents and younger adults, in theory, prevention should be able to play a key role in the reducing the risk of ARCD. Nutrition and physical activity are key elements of prevention in reducing the susceptibility to themetabolic syndrome and type 2 diabetes.Omega-3 fatty acids such as docosahexaenoic acid (DHA) are amongst the nutrients of particular interest relative to optimal glucose metabolism, especially for cognition (Cunnane et al., 2009; Pifferi et al., 2010; Cunnane et al., 2011).

Collaboration


Dive into the Raphaël Chouinard-Watkins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Pinçon

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge