Raphael F. Garcia
Institut supérieur de l'aéronautique et de l'espace
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Raphael F. Garcia.
Nature | 2007
Giuseppe Piccioni; P. Drossart; A. Sánchez-Lavega; R. Hueso; F. W. Taylor; Colin F. Wilson; D. Grassi; L. V. Zasova; Maria Luisa Moriconi; A. Adriani; Sebastien Lebonnois; Angioletta Coradini; B. Bezard; F. Angrilli; Gabriele Arnold; Kevin H. Baines; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; M. I. Blecka; Robert W. Carlson; A. M. Di Lellis; Th. Encrenaz; Stephane Erard; S. Fonti; V. Formisano; T. Fouchet; Raphael F. Garcia; Rainer Haus
Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright ‘dipole’ feature surrounded by a cold ‘collar’ at its north pole. The polar dipole is a ‘double-eye’ feature at the centre of a vast vortex that rotates around the pole, and is possibly associated with rapid downwelling. The polar cold collar is a wide, shallow river of cold air that circulates around the polar vortex. One outstanding question has been whether the global circulation was symmetric, such that a dipole feature existed at the south pole. Here we report observations of Venus’ south-polar region, where we have seen clouds with morphology much like those around the north pole, but rotating somewhat faster than the northern dipole. The vortex may extend down to the lower cloud layers that lie at about 50 km height and perhaps deeper. The spectroscopic properties of the clouds around the south pole are compatible with a sulphuric acid composition.
Nature | 2007
P. Drossart; Giuseppe Piccioni; J.-C. Gérard; Miguel Angel Lopez-Valverde; A. Sánchez-Lavega; L. V. Zasova; R. Hueso; F. W. Taylor; B. Bezard; A. Adriani; F. Angrilli; Gabriele Arnold; Kevin H. Baines; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; M. I. Blecka; Robert W. Carlson; Angioletta Coradini; A. M. Di Lellis; Th. Encrenaz; Stephane Erard; S. Fonti; V. Formisano; T. Fouchet; Raphael F. Garcia; Rainer Haus; J. Helbert; Nikolay Ignatiev
The upper atmosphere of a planet is a transition region in which energy is transferred between the deeper atmosphere and outer space. Molecular emissions from the upper atmosphere (90–120 km altitude) of Venus can be used to investigate the energetics and to trace the circulation of this hitherto little-studied region. Previous spacecraft and ground-based observations of infrared emission from CO2, O2 and NO have established that photochemical and dynamic activity controls the structure of the upper atmosphere of Venus. These data, however, have left unresolved the precise altitude of the emission owing to a lack of data and of an adequate observing geometry. Here we report measurements of day-side CO2 non-local thermodynamic equilibrium emission at 4.3 µm, extending from 90 to 120 km altitude, and of night-side O2 emission extending from 95 to 100 km. The CO2 emission peak occurs at ∼115 km and varies with solar zenith angle over a range of ∼10 km. This confirms previous modelling, and permits the beginning of a systematic study of the variability of the emission. The O2 peak emission happens at 96 km ± 1 km, which is consistent with three-body recombination of oxygen atoms transported from the day side by a global thermospheric sub-solar to anti-solar circulation, as previously predicted.
Journal of Geophysical Research | 2014
Raphael F. Garcia; Eelco Doornbos; Sean L. Bruinsma; Hélène Hebert
Oceanic tsunami waves couple with atmospheric gravity waves, as previously observed through ionospheric and airglow perturbations. Aerodynamic velocities and density variations are computed from Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) accelerometer and thruster data during Tohoku-Oki tsunami propagation. High-frequency perturbations of these parameters are observed during three expected crossings of the tsunami-generated gravity waves by the GOCE satellite. From theoretical relations between air density and vertical and horizontal velocities inside the gravity wave, we demonstrate that the measured perturbations are consistent with a gravity wave generated by the tsunami and provide a way to estimate the propagation azimuth of the gravity wave. Moreover, because GOCE measurements can constrain the wave polarization, a marker (noted C3) of any gravity wave crossing by the GOCE satellite is constructed from correlation coefficients between the observed atmospheric state parameters. These observations validate a new observation tool of thermospheric gravity waves generated by tsunamis above the open ocean.
Space Science Reviews | 2017
Naomi Murdoch; D. Mimoun; Raphael F. Garcia; W. Rapin; Taichi Kawamura; Philippe Lognonné; Donald J. Banfield; W. Bruce Banerdt
The SEIS (Seismic Experiment for Interior Structures) instrument onboard the InSight mission to Mars is the critical instrument for determining the interior structure of Mars, the current level of tectonic activity and the meteorite flux. Meeting the performance requirements of the SEIS instrument is vital to successfully achieve these mission objectives. Here we analyse in-situ wind measurements from previous Mars space missions to understand the wind environment that we are likely to encounter on Mars, and then we use an elastic ground deformation model to evaluate the mechanical noise contributions on the SEIS instrument due to the interaction between the Martian winds and the InSight lander. Lander mechanical noise maps that will be used to select the best deployment site for SEIS once the InSight lander arrives on Mars are also presented. We find the lander mechanical noise may be a detectable signal on the InSight seismometers. However, for the baseline SEIS deployment position, the noise is expected to be below the total noise requirement >97%
Journal of Geophysical Research | 2016
Raphael F. Garcia; Sean L. Bruinsma; Lotfi Massarweh; Eelco Doornbos
>97~\%
Seismological Research Letters | 2017
John Clinton; Domenico Giardini; Philippe Lognonné; B. Banerdt; M. van Driel; M. Drilleau; Naomi Murdoch; Mark P. Panning; Raphael F. Garcia; D. Mimoun; M. P. Golombek; Jeroen Tromp; Renee C. Weber; Maren Böse; S. Ceylan; Ingrid Daubar; B. Kenda; A. Khan; L. Perrin; Aymeric Spiga
of the time and is, therefore, not expected to endanger the InSight mission objectives.
Icarus | 2015
Raphael F. Garcia; Naomi Murdoch; D. Mimoun
This study is focused on the effect of solar flux conditions on the dynamics of gravity waves (GWs) in the thermosphere. Air density and crosswind in situ estimates from the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) accelerometers are analyzed for the whole mission duration. The analysis is performed in the Fourier spectral domain averaging spectral results over periods of 2 months close to solstices. A new GW marker (called C3f) is introduced here to characterize GWs activity under low, medium, and high solar flux conditions, showing a clear solar damping effect on GW activity. Most GW signal is found in a spectral range above 8 mHz in GOCE data, meaning a maximum horizontal wavelength of around 1000 km. The level of GW activity at GOCE altitude is strongly decreasing with increasing solar flux. Furthermore, a shift in the dominant frequency with solar flux conditions has been noted, leading to larger horizontal wavelengths (from 200 to 500 km) during high solar flux conditions. The correlation between air density variability and GW marker allows to identify most of the large-amplitude perturbations below 67∘ latitudes as due to GWs. The influence of correlated error sources, between air density and crosswinds, is discussed. Consistency of the spectral domain results is verified in the time domain with a global mapping of high-frequency air density perturbations along the GOCE orbit. This analysis shows a clear dependence with geomagnetic latitude with strong perturbations at magnetic poles and an extension to lower latitudes favored by low solar activity conditions. These results are consistent with previous Challenging Minisatellite Payload (CHAMP) data analysis and with general circulation models.
Geophysical Research Letters | 2018
Siddharth Krishnamoorthy; Attila Komjathy; Michael Pauken; James A. Cutts; Raphael F. Garcia; D. Mimoun; Alexandre Cadu; Anthony Sournac; Jennifer M. Jackson; Voon Hui Lai; Daniel C. Bowman
The InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) lander will deploy a seismic monitoring package on Mars in November 2018. In preparation for the data return, we prepared a blind test in which we invite participants to detect and characterize seismicity included in a synthetic dataset of continuous waveforms from a single station that mimics both the streams of data that will be available from InSight, as well as expected tectonic and impact seismicity and noise conditions on Mars. We expect that the test will ultimately improve and extend the current set of methods that the InSight team plan to use in routine analysis of the Martian dataset.
Journal of the Acoustical Society of America | 2008
Raphael F. Garcia; Philippe Lognonné; G. Occhipinti
Abstract Seismic shaking is an attractive mechanism to explain the destabilisation of regolith slopes and the regolith migration found on the surfaces of asteroids (Richardson, J.E., Melosh, H.J., Greenberg, R. [2004]. Science 306, 1526–1529. http://dx.doi.org/10.1126/science.1104731 ; Miyamoto, H., et al., 2007 ). Here, we use a continuum mechanics method to simulate the seismic wave propagation in an asteroid. Assuming that asteroids can be described by a cohesive core surrounded by a thin non-cohesive regolith layer, our numerical simulations of vibrations induced by micro-meteoroids suggest that the surface peak ground accelerations induced by micro-meteoroid impacts may have been previously under-estimated. Our lower bound estimate of vertical accelerations induced by seismic waves is about 50 times larger than previous estimates. It suggests that impact events triggering seismic activity are more frequent than previously assumed for asteroids in the kilometric and sub-kilometric size range. The regolith lofting is also estimated by a first order ballistic approximation. Vertical displacements are small, but lofting times are long compared to the duration of the seismic signals. The regolith movement has a non-linear dependence on the distance to the impact source which is induced by the type of seismic wave generating the first movement. The implications of regolith concentration in lows of surface acceleration potential are also discussed. We suggest that the resulting surface thermal inertia variations of small fast rotators may induce an increased sensitivity of these objects to the Yarkovsky effect.
Physics of the Earth and Planetary Interiors | 2011
Raphael F. Garcia; Jeannine Gagnepain-Beyneix; Sébastien Chevrot; Philippe Lognonné
Abstract We conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free-flying balloon is lower compared to one on a moored balloon. This has never been experimentally demonstrated in the lower troposphere. While seismoacoustic signals were not recorded on the hot air balloon platform owing to operational challenges, we demonstrate the detection of seismoacoustic signals on our moored balloon platform. Our results have important implications for performing seismology in harsh surface environments such as Venus through atmospheric remote sensing.