Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raphaël Lugan is active.

Publication


Featured researches published by Raphaël Lugan.


Nature Communications | 2014

The seco-iridoid pathway from Catharanthus roseus

Karel Miettinen; Lemeng Dong; Nicolas Navrot; Thomas Schneider; Vincent Burlat; Jacob Pollier; Lotte Woittiez; Sander van der Krol; Raphaël Lugan; Tina Ilc; Robert Verpoorte; Kirsi-Marja Oksman-Caldentey; Enrico Martinoia; Harro J. Bouwmeester; Alain Goossens; Johan Memelink; Danièle Werck-Reichhart

The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anticancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high market prices and poor availability. Their biotechnological production is hampered by the fragmentary knowledge of their biosynthesis. Here we report the discovery of the last four missing steps of the (seco)iridoid biosynthesis pathway. Expression of the eight genes encoding this pathway, together with two genes boosting precursor formation and two downstream alkaloid biosynthesis genes, in an alternative plant host, allows the heterologous production of the complex MIA strictosidine. This confirms the functionality of all enzymes of the pathway and highlights their utility for synthetic biology programmes towards a sustainable biotechnological production of valuable (seco)iridoids and alkaloids with pharmaceutical and agricultural applications.


Journal of Biological Chemistry | 2012

Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone Jasmonoyl-isoleucine for catabolic turnover.

Thierry Heitz; Emilie Widemann; Raphaël Lugan; Laurence Miesch; Pascaline Ullmann; Laurent Désaubry; Emilie Holder; Bernard Grausem; Sylvie Kandel; Michel Miesch; Danièle Werck-Reichhart; Franck Pinot

Background: Oxidized derivatives of the plant hormone jasmonoyl-isoleucine accumulate in wounded Arabidopsis leaves. Results: Cytochromes P450 CYP94C1 and CYP94B3 cooperate to catalyze the formation of 12OH-JA-Ile and 12COOH-JA-Ile. Conclusion: CYP94C1 and CYP94B3 define a major route for JA-Ile catabolism. Significance: Elucidation of CYP94-mediated JA-Ile oxidation opens new avenues for understanding jasmonate metabolism and signaling. The jasmonate hormonal pathway regulates important defensive and developmental processes in plants. Jasmonoyl-isoleucine (JA-Ile) has been identified as a specific ligand binding the COI1-JAZ co-receptor to relieve repression of jasmonate responses. Two JA-Ile derivatives, 12OH-JA-Ile and 12COOH-JA-Ile, accumulate in wounded Arabidopsis leaves in a COI1- and JAR1-dependent manner and reflect catabolic turnover of the hormone. Here we report the biochemical and genetic characterization of two wound-inducible cytochromes P450, CYP94C1 and CYP94B3, that are involved in JA-Ile oxidation. Both enzymes expressed in yeast catalyze two successive oxidation steps of JA-Ile with distinct characteristics. CYP94B3 performed efficiently the initial hydroxylation of JA-Ile to 12OH-JA-Ile, with little conversion to 12COOH-JA-Ile, whereas CYP94C1 catalyzed preferentially carboxy-derivative formation. Metabolic analysis of loss- and gain-of-function plant lines were consistent with in vitro enzymatic properties. cyp94b3 mutants were largely impaired in 12OH-JA-Ile levels upon wounding and to a lesser extent in 12COOH-JA-Ile levels. In contrast, cyp94c1 plants showed wild-type 12OH-JA-Ile accumulation but lost about 60% 12COOH-JA-Ile. cyp94b3cyp94c1 double mutants hyperaccumulated JA-Ile with near abolition of 12COOH-JA-Ile. Distinct JA-Ile oxidation patterns in different plant genotypes were correlated with specific JA-responsive transcript profiles, indicating that JA-Ile oxidation status affects signaling. Interestingly, exaggerated JA-Ile levels were associated with JAZ repressor hyperinduction but did not enhance durably defense gene induction, revealing a novel negative feedback signaling loop. Finally, interfering with CYP94 gene expression affected root growth sensitivity to exogenous jasmonic acid. These results identify CYP94B3/C1-mediated oxidation as a major catabolic route for turning over the JA-Ile hormone.


Plant Physiology | 2012

Structural, Functional, and Evolutionary Analysis of the Unusually Large Stilbene Synthase Gene Family in Grapevine

Claire Parage; Raquel Tavares; Stéphane Réty; Raymonde Baltenweck-Guyot; Anne Poutaraud; Lauriane Renault; Dimitri Heintz; Raphaël Lugan; Gabriel Marais; Sébastien Aubourg; Philippe Hugueney

Stilbenes are a small family of phenylpropanoids produced in a number of unrelated plant species, including grapevine (Vitis vinifera). In addition to their participation in defense mechanisms in plants, stilbenes, such as resveratrol, display important pharmacological properties and are postulated to be involved in the health benefits associated with a moderate consumption of red wine. Stilbene synthases (STSs), which catalyze the biosynthesis of the stilbene backbone, seem to have evolved from chalcone synthases (CHSs) several times independently in stilbene-producing plants. STS genes usually form small families of two to five closely related paralogs. By contrast, the sequence of grapevine reference genome (cv PN40024) has revealed an unusually large STS gene family. Here, we combine molecular evolution and structural and functional analyses to investigate further the high number of STS genes in grapevine. Our reannotation of the STS and CHS gene families yielded 48 STS genes, including at least 32 potentially functional ones. Functional characterization of nine genes representing most of the STS gene family diversity clearly indicated that these genes do encode for proteins with STS activity. Evolutionary analysis of the STS gene family revealed that both STS and CHS evolution are dominated by purifying selection, with no evidence for strong selection for new functions among STS genes. However, we found a few sites under different selection pressures in CHS and STS sequences, whose potential functional consequences are discussed using a structural model of a typical STS from grapevine that we developed.


The Plant Cell | 2013

Gene coexpression analysis reveals a complex metabolism of the monoterpene alcohol linalool in Arabidopsis flowers

Jean-François Ginglinger; Benoît Boachon; René Höfer; Christian Paetz; Tobias G. Köllner; Raphaël Lugan; Jérôme Mutterer; M. Fischer; Pascaline Ullmann; Franziska Beran; P. Claudel; R. Baltenweck; Laurence Miesch; Francel Verstappen; Harro J. Bouwmeester; Michel Miesch; Bernd Schneider; Jonathan Gershenzon; J. Ehlting; Danièle Werck-Reichhart

This work characterizes two cytochrome P450s and two monoterpene synthases that are coexpressed in flowers and thus predicted to be involved in monoterpenoid metabolism. The results show that despite Arabidopsis thaliana being autogamous, its flowers exhibit extensive linalool metabolism. The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus predicted to be involved in monoterpenoid metabolism. We show that all four selected genes, the two terpene synthases (TPS10 and TPS14) and the two cytochrome P450s (CYP71B31 and CYP76C3), are simultaneously expressed at anthesis, mainly in upper anther filaments and in petals. Upon transient expression in Nicotiana benthamiana, the TPS enzymes colocalize in vesicular structures associated with the plastid surface, whereas the P450 proteins were detected in the endoplasmic reticulum. Whether they were expressed in Saccharomyces cerevisiae or in N. benthamiana, the TPS enzymes formed two different enantiomers of linalool: (−)-(R)-linalool for TPS10 and (+)-(S)-linalool for TPS14. Both P450 enzymes metabolize the two linalool enantiomers to form different but overlapping sets of hydroxylated or epoxidized products. These oxygenated products are not emitted into the floral headspace, but accumulate in floral tissues as further converted or conjugated metabolites. This work reveals complex linalool metabolism in Arabidopsis flowers, the ecological role of which remains to be determined.


Metabolic Engineering | 2013

Geraniol hydroxylase and hydroxygeraniol oxidase activities of the CYP76 family of cytochrome P450 enzymes and potential for engineering the early steps of the (seco)iridoid pathway.

René Höfer; Lemeng Dong; François André; Jean-François Ginglinger; Raphaël Lugan; Carole Gavira; Sébastien Grec; Gerhard Lang; Johan Memelink; Sander van der Krol; Harro J. Bouwmeester; Danièle Werck-Reichhart

The geraniol-derived (seco)iridoid skeleton is a precursor for a large group of bioactive compounds with diverse therapeutic applications, including the widely used anticancer molecule vinblastine. Despite of this economic prospect, the pathway leading to iridoid biosynthesis from geraniol is still unclear. The first geraniol hydroxylation step has been reported to be catalyzed by cytochrome P450 enzymes such as CYP76B6 from Catharanthus roseus and CYP76C1 from Arabidopsis thaliana. In the present study, an extended functional analysis of CYP76 family members was carried-out to identify the most effective enzyme to be used for pathway reconstruction. This disproved CYP76C1 activity and led to the characterization of CYP76C4 from A. thaliana as a geraniol 9- or 8-hydroxylase. CYP76B6 emerged as a highly specialized multifunctional enzyme catalyzing two sequential oxidation steps leading to the formation of 8-oxogeraniol from geraniol. This dual function was confirmed in planta using a leaf-disc assay. The first step, geraniol hydroxylation, was very efficient and fast enough to outcompete geraniol conjugation in plant tissues. When the enzyme was expressed in leaf tissues, 8-oxogeraniol was converted into further oxidized and/or reduced compounds in the absence of the next enzyme of the iridoid pathway.


Plant Physiology | 2010

The Seed Composition of Arabidopsis Mutants for the Group 3 Sulfate Transporters Indicates a Role in Sulfate Translocation within Developing Seeds

Hélène Zuber; Jean-Claude Davidian; Grégoire Aubert; Delphine Aimé; Maya Belghazi; Raphaël Lugan; Dimitri Heintz; Markus Wirtz; Ruediger Hell; Richard Thompson; Karine Gallardo

Sulfate is required for the synthesis of sulfur-containing amino acids and numerous other compounds essential for the plant life cycle. The delivery of sulfate to seeds and its translocation between seed tissues is likely to require specific transporters. In Arabidopsis (Arabidopsis thaliana), the group 3 plasmalemma-predicted sulfate transporters (SULTR3) comprise five genes, all expressed in developing seeds, especially in the tissues surrounding the embryo. Here, we show that sulfur supply to seeds is unaffected by T-DNA insertions in the SULTR3 genes. However, remarkably, an increased accumulation of sulfate was found in mature seeds of four mutants out of five. In these mutant seeds, the ratio of sulfur in sulfate form versus total sulfur was significantly increased, accompanied by a reduction in free cysteine content, which varied depending on the gene inactivated. These results demonstrate a reduced capacity of the mutant seeds to metabolize sulfate and suggest that these transporters may be involved in sulfate translocation between seed compartments. This was further supported by sulfate measurements of the envelopes separated from the embryo of the sultr3;2 mutant seeds, which showed differences in sulfate partitioning compared with the wild type. A dissection of the seed proteome of the sultr3 mutants revealed protein changes characteristic of a sulfur-stress response, supporting a role for these transporters in providing sulfate to the embryo. The mutants were affected in 12S globulin accumulation, demonstrating the importance of intraseed sulfate transport for the synthesis and maturation of embryo proteins. Metabolic adjustments were also revealed, some of which could release sulfur from glucosinolates.


Journal of Biological Chemistry | 2013

The Amidohydrolases IAR3 and ILL6 Contribute to Jasmonoyl-Isoleucine Hormone Turnover and Generate 12-Hydroxyjasmonic Acid Upon Wounding in Arabidopsis Leaves

Emilie Widemann; Laurence Miesch; Raphaël Lugan; Emilie Holder; Clément Heinrich; Yann Aubert; Michel Miesch; Franck Pinot; Thierry Heitz

Background: The plant hormone jasmonoyl-isoleucine (JA-Ile) undergoes oxidative catabolism mediated by cytochrome P450 enzymes. Results: Two amidohydrolases catalyze the cleavage of JA-Ile conjugates and generate 12OH-JA during Arabidopsis wound response. Conclusion: IAR3 and ILL6 define an additional pathway for JA-Ile turnover and establish a biosynthetic route for 12OH-JA. Significance: New enzymatic steps unravel the complexity in jasmonate metabolism. Jasmonates (JAs) are a class of signaling compounds that mediate complex developmental and adaptative responses in plants. JAs derive from jasmonic acid (JA) through various enzymatic modifications, including conjugation to amino acids or oxidation, yielding an array of derivatives. The main hormonal signal, jasmonoyl-l-isoleucine (JA-Ile), has been found recently to undergo catabolic inactivation by cytochrome P450-mediated oxidation. We characterize here two amidohydrolases, IAR3 and ILL6, that define a second pathway for JA-Ile turnover during the wound response in Arabidopsis leaves. Biochemical and genetic evidence indicates that these two enzymes cleave the JA-Ile signal, but act also on the 12OH-JA-Ile conjugate. We also show that unexpectedly, the abundant accumulation of tuberonic acid (12OH-JA) after wounding originates partly through a sequential pathway involving (i) conjugation of JA to Ile, (ii) oxidation of the JA-Ile conjugate, and (iii) cleavage under the action of the amidohydrolases. The coordinated actions of oxidative and hydrolytic branches in the jasmonate pathway highlight novel mechanisms of JA-Ile hormone turnover and redefine the dynamic metabolic grid of jasmonate conversion in the wound response.


Plant and Cell Physiology | 2012

Arginase Induction Represses Gall Development During Clubroot Infection in Arabidopsis

Antoine Gravot; Carole Deleu; Geoffrey Wagner; Christine Lariagon; Raphaël Lugan; Christopher D. Todd; David Wendehenne; Régine Delourme; Alain Bouchereau; Maria J. Manzanares-Dauleux

Arginase induction can play a defensive role through the reduction of arginine availability for phytophageous insects. Arginase activity is also induced during gall growth caused by Plasmodiophora brassicae infection in roots of Arabidopsis thaliana; however, its possible role in this context has been unclear. We report here that the mutation of the arginase-encoding gene ARGAH2 abrogates clubroot-induced arginase activity and results in enhanced gall size in infected roots, suggesting that arginase plays a defensive role. Induction of arginase activity in infected roots was impaired in the jar1 mutant, highlighting a link between the arginase response to clubroot and jasmonate signaling. Clubroot-induced accumulation of the principal amino acids in galls was not affected by the argah2 mutation. Because ARGAH2 was previously reported to control auxin response, we investigated the role of ARGAH2 in callus induction. ARGAH2 was found to be highly induced in auxin/cytokinin-triggered aseptic plant calli, and callus development was enhanced in argah2 in the absence of the pathogen. We hypothesized that arginase contributes to a negative control over clubroot symptoms, by reducing hormone-triggered cellular proliferation.


The Plant Cell | 2015

Involvement of Arabidopsis Hexokinase1 in Cell Death Mediated by Myo-Inositol Accumulation

Quentin Bruggeman; Florence Prunier; Christelle Mazubert; Linda de Bont; Marie Garmier; Raphaël Lugan; Moussa Benhamed; Catherine Bergounioux; Cécile Raynaud; Marianne Delarue

A novel pathway of HXK1-mediated cell death in which two MIPS enzymes act cooperatively highlights a novel checkpoint of inositol homeostasis in plants. Programmed cell death (PCD) is essential for several aspects of plant life, including development and stress responses. We recently identified the mips1 mutant of Arabidopsis thaliana, which is deficient for the enzyme catalyzing the limiting step of myo-inositol (MI) synthesis. One of the most striking features of mips1 is the light-dependent formation of lesions on leaves due to salicylic acid (SA)-dependent PCD. Here, we identified a suppressor of PCD by screening for mutations that abolish the mips1 cell death phenotype. Our screen identified the hxk1 mutant, mutated in the gene encoding the hexokinase1 (HXK1) enzyme that catalyzes sugar phosphorylation and acts as a genuine glucose sensor. We show that HXK1 is required for lesion formation in mips1 due to alterations in MI content, via SA-dependant signaling. Using two catalytically inactive HXK1 mutants, we also show that hexokinase catalytic activity is necessary for the establishment of lesions in mips1. Gas chromatography-mass spectrometry analyses revealed a restoration of the MI content in mips1 hxk1 that it is due to the activity of the MIPS2 isoform, while MIPS3 is not involved. Our work defines a pathway of HXK1-mediated cell death in plants and demonstrates that two MIPS enzymes act cooperatively under a particular metabolic status, highlighting a novel checkpoint of MI homeostasis in plants.


Plant Journal | 2013

Legume adaptation to sulfur deficiency revealed by comparing nutrient allocation and seed traits in Medicago truncatula

Hélène Zuber; Germain Poignavent; Christine Le Signor; Delphine Aimé; Eric Vieren; Charlène Tadla; Raphaël Lugan; Maya Belghazi; Valérie Labas; Anne-Lise Santoni; Daniel Wipf; Julia Buitink; Jean-Christophe Avice; Christophe Salon; Karine Gallardo

Reductions in sulfur dioxide emissions and the use of sulfur-free mineral fertilizers are decreasing soil sulfur levels and threaten the adequate fertilization of most crops. To provide knowledge regarding legume adaptation to sulfur restriction, we subjected Medicago truncatula, a model legume species, to sulfur deficiency at various developmental stages, and compared the yield, nutrient allocation and seed traits. This comparative analysis revealed that sulfur deficiency at the mid-vegetative stage decreased yield and altered the allocation of nitrogen and carbon to seeds, leading to reduced levels of major oligosaccharides in mature seeds, whose germination was dramatically affected. In contrast, during the reproductive period, sulfur deficiency had little influence on yield and nutrient allocation, but the seeds germinated slowly and were characterized by low levels of a biotinylated protein, a putative indicator of germination vigor that has not been previously related to sulfur nutrition. Significantly, plants deprived of sulfur at an intermediary stage (flowering) adapted well by remobilizing nutrients from source organs to seeds, ensuring adequate quantities of carbon and nitrogen in seeds. This efficient remobilization of photosynthates may be explained by vacuolar sulfate efflux to maintain leaf metabolism throughout reproductive growth, as suggested by transcript and metabolite profiling. The seeds from these plants, deprived of sulfur at the floral transition, contained normal levels of major oligosaccharides but their germination was delayed, consistent with low levels of sucrose and the glycolytic enzymes required to restart seed metabolism during imbibition. Overall, our findings provide an integrative view of the legume response to sulfur deficiency.

Collaboration


Dive into the Raphaël Lugan's collaboration.

Top Co-Authors

Avatar

Danièle Werck-Reichhart

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Miesch

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Emilie Widemann

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Franck Pinot

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Thierry Heitz

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Dimitri Heintz

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Harro J. Bouwmeester

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hélène Zuber

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge