Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raphael Meier is active.

Publication


Featured researches published by Raphael Meier.


IEEE Transactions on Medical Imaging | 2015

The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

Bjoern H. Menze; András Jakab; Stefan Bauer; Jayashree Kalpathy-Cramer; Keyvan Farahani; Justin S. Kirby; Yuliya Burren; Nicole Porz; Johannes Slotboom; Roland Wiest; Levente Lanczi; Elizabeth R. Gerstner; Marc-André Weber; Tal Arbel; Brian B. Avants; Nicholas Ayache; Patricia Buendia; D. Louis Collins; Nicolas Cordier; Jason J. Corso; Antonio Criminisi; Tilak Das; Hervé Delingette; Çağatay Demiralp; Christopher R. Durst; Michel Dojat; Senan Doyle; Joana Festa; Florence Forbes; Ezequiel Geremia

In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients - manually annotated by up to four raters - and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.


Scientific Reports | 2015

Fully automatic GBM segmentation in the TCGA-GBM dataset: Prognosis and correlation with VASARI features

Emmanuel Rios Velazquez; Raphael Meier; William D. Dunn; Brian M. Alexander; Roland Wiest; Stefan Bauer; David A. Gutman; Mauricio Reyes; Hugo J.W.L. Aerts

Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. MRI sets of 109 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA). Spearman’s correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Auto-segmented sub-volumes showed moderate to high agreement with manually delineated volumes (range (r): 0.4 – 0.86). Also, the auto and manual volumes showed similar correlation with VASARI features (auto r = 0.35, 0.43 and 0.36; manual r = 0.17, 0.67, 0.41, for contrast-enhancing, necrosis and edema, respectively). The auto-segmented contrast-enhancing volume and post-contrast abnormal volume showed the highest AUC (0.66, CI: 0.55–0.77 and 0.65, CI: 0.54–0.76), comparable to manually defined volumes (0.64, CI: 0.53–0.75 and 0.63, CI: 0.52–0.74, respectively). BraTumIA and manual tumor sub-compartments showed comparable performance in terms of prognosis and correlation with VASARI features. This method can enable more reproducible definition and quantification of imaging based biomarkers and has potential in high-throughput medical imaging research.


Scientific Reports | 2016

Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry

Raphael Meier; Urspeter Knecht; Tina Loosli; Stefan Bauer; Johannes Slotboom; Roland Wiest; Mauricio Reyes

Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83–0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments.


Journal of Neurosurgery | 2017

Automatic estimation of extent of resection and residual tumor volume of patients with glioblastoma.

Raphael Meier; Nicole Porz; Urspeter Knecht; Tina Loosli; Philippe Schucht; Jürgen Beck; Johannes Slotboom; Roland Wiest; Mauricio Reyes

OBJECTIVE In the treatment of glioblastoma, residual tumor burden is the only prognostic factor that can be actively influenced by therapy. Therefore, an accurate, reproducible, and objective measurement of residual tumor burden is necessary. This study aimed to evaluate the use of a fully automatic segmentation method-brain tumor image analysis (BraTumIA)-for estimating the extent of resection (EOR) and residual tumor volume (RTV) of contrast-enhancing tumor after surgery. METHODS The imaging data of 19 patients who underwent primary resection of histologically confirmed supratentorial glioblastoma were retrospectively reviewed. Contrast-enhancing tumors apparent on structural preoperative and immediate postoperative MR imaging in this patient cohort were segmented by 4 different raters and the automatic segmentation BraTumIA software. The manual and automatic results were quantitatively compared. RESULTS First, the interrater variabilities in the estimates of EOR and RTV were assessed for all human raters. Interrater agreement in terms of the coefficient of concordance (W) was higher for RTV (W = 0.812; p < 0.001) than for EOR (W = 0.775; p < 0.001). Second, the volumetric estimates of BraTumIA for all 19 patients were compared with the estimates of the human raters, which showed that for both EOR (W = 0.713; p < 0.001) and RTV (W = 0.693; p < 0.001) the estimates of BraTumIA were generally located close to or between the estimates of the human raters. No statistically significant differences were detected between the manual and automatic estimates. BraTumIA showed a tendency to overestimate contrast-enhancing tumors, leading to moderate agreement with expert raters with respect to the literature-based, survival-relevant threshold values for EOR. CONCLUSIONS BraTumIA can generate volumetric estimates of EOR and RTV, in a fully automatic fashion, which are comparable to the estimates of human experts. However, automated analysis showed a tendency to overestimate the volume of a contrast-enhancing tumor, whereas manual analysis is prone to subjectivity, thereby causing considerable interrater variability.


medical image computing and computer assisted intervention | 2014

Patient-Specific Semi-supervised Learning for Postoperative Brain Tumor Segmentation

Raphael Meier; Stefan Bauer; Johannes Slotboom; Roland Wiest; Mauricio Reyes

In contrast to preoperative brain tumor segmentation, the problem of postoperative brain tumor segmentation has been rarely approached so far. We present a fully-automatic segmentation method using multimodal magnetic resonance image data and patient-specific semi-supervised learning. The idea behind our semi-supervised approach is to effectively fuse information from both pre- and postoperative image data of the same patient to improve segmentation of the postoperative image. We pose image segmentation as a classification problem and solve it by adopting a semi-supervised decision forest. The method is evaluated on a cohort of 10 high-grade glioma patients, with segmentation performance and computation time comparable or superior to a state-of-the-art brain tumor segmentation method. Moreover, our results confirm that the inclusion of preoperative MR images lead to a better performance regarding postoperative brain tumor segmentation.


Medical Image Analysis | 2018

Enhancing interpretability of automatically extracted machine learning features: application to a RBM-Random Forest system on brain lesion segmentation.

Sérgio Pereira; Raphael Meier; Richard McKinley; Roland Wiest; Victor Alves; Carlos A. Silva; Mauricio Reyes

HighlightsWe propose methodologies to enhance the interpretability of a machine learning system.The approach can yield two levels of interpretability (global and local), allowing us to assess how the system learned task‐specific relations and its individual predictions.Validation on brain tumor segmentation and penumbra estimation in acute stroke.Based on the evaluated clinical scenarios, the proposed approach allows us to confirm that the machine learning system learns relations coherent with expert knowledge and annotation protocols. Graphical abstract Figure. No Caption available. Abstract Machine learning systems are achieving better performances at the cost of becoming increasingly complex. However, because of that, they become less interpretable, which may cause some distrust by the end‐user of the system. This is especially important as these systems are pervasively being introduced to critical domains, such as the medical field. Representation Learning techniques are general methods for automatic feature computation. Nevertheless, these techniques are regarded as uninterpretable “black boxes”. In this paper, we propose a methodology to enhance the interpretability of automatically extracted machine learning features. The proposed system is composed of a Restricted Boltzmann Machine for unsupervised feature learning, and a Random Forest classifier, which are combined to jointly consider existing correlations between imaging data, features, and target variables. We define two levels of interpretation: global and local. The former is devoted to understanding if the system learned the relevant relations in the data correctly, while the later is focused on predictions performed on a voxel‐ and patient‐level. In addition, we propose a novel feature importance strategy that considers both imaging data and target variables, and we demonstrate the ability of the approach to leverage the interpretability of the obtained representation for the task at hand. We evaluated the proposed methodology in brain tumor segmentation and penumbra estimation in ischemic stroke lesions. We show the ability of the proposed methodology to unveil information regarding relationships between imaging modalities and extracted features and their usefulness for the task at hand. In both clinical scenarios, we demonstrate that the proposed methodology enhances the interpretability of automatically learned features, highlighting specific learning patterns that resemble how an expert extracts relevant data from medical images.


international workshop on brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries | 2015

Parameter Learning for CRF-Based Tissue Segmentation of Brain Tumors

Raphael Meier; Venetia Karamitsou; Simon Habegger; Roland Wiest; Mauricio Reyes

In this work, we investigated the potential of a recently proposed parameter learning algorithm for Conditional Random Fields (CRFs). Parameters of a pairwise CRF are estimated via a stochastic subgradient descent of a max-margin learning problem. We compared the performance of our brain tumor segmentation method using parameter learning to a version using hand-tuned parameters. Preliminary results on a subset of the BRATS2015 training set show that parameter learning leads to comparable or even improved performance. In addition, we also performed experiments to study the impact of the composition of training data on the final segmentation performance. We found that models trained on mixed data sets achieve reasonable performance compared to models trained on stratified data.


international workshop on brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries | 2016

CRF-Based Brain Tumor Segmentation: Alleviating the Shrinking Bias

Raphael Meier; Urspeter Knecht; Roland Wiest; Mauricio Reyes

This paper extends a previously published brain tumor segmentation method with a dense Conditional Random Field (CRF). Dense CRFs can overcome the shrinking bias inherent to many grid-structured CRFs. We focus on illustrating the impact of alleviating the shrinking bias on the performance of CRF-based brain tumor segmentation. The proposed segmentation method is evaluated using data from the MICCAI BRATS 2013 & 2015 data sets (up to 110 patient cases for testing) and compared to a baseline method using a grid-structured CRF. Improved segmentation performance for the complete and enhancing tumor was observed with respect to grid-structured CRFs.


European Journal of Radiology | 2017

Comparison of perioperative automated versus manual two-dimensional tumor analysis in glioblastoma patients

Frauke Kellner-Weldon; Christoph Stippich; Roland Wiest; Vera Lehmann; Raphael Meier; Jürgen Beck; Philippe Schucht; Andreas Raabe; Mauricio Reyes; Andrea Bink

OBJECTIVES Current recommendations for the measurement of tumor size in glioblastoma continue to employ manually measured 2D product diameters of enhancing tumor. To overcome the rater dependent variability, this study aimed to evaluate the potential of automated 2D tumor analysis (ATA) compared to highly experienced rater teams in the workup of pre- and postoperative image interpretation in a routine clinical setting. MATERIALS AND METHODS From 92 patients with newly diagnosed GB and performed surgery, manual rating of the sum product diameter (SPD) of enhancing tumor on magnetic resonance imaging (MRI) contrast enhanced T1w was compared to automated machine learning-based tumor analysis using FLAIR, T1w, T2w and contrast enhanced T1w. RESULTS Preoperative correlation of SPD between two rater teams (1 and 2) was r=0.921 (p<0.0001). Difference among the rater teams and ATA (p=0.567) was not statistically significant. Correlation between team 1 vs. automated tumor analysis and team 2 vs. automated tumor analysis was r=0.922 and r=0.897, respectively (p<0.0001 for both). For postoperative evaluation interrater agreement between team 1 and 2 was moderate (Kappa 0.53). Manual consensus classified 46 patients as completely resected enhancing tumor. Automated tumor analysis agreed in 13/46 (28%) due to overestimation caused by hemorrhage and choroid plexus enhancement. CONCLUSIONS Automated 2D measurements can be promisingly translated into clinical trials in the preoperative evaluation. Immediate postoperative SPD evaluation for extent of resection is mainly influenced by postoperative blood depositions and poses challenges for human raters and ATA alike.


international symposium on biomedical imaging | 2014

Interactive segmentation of MR images from brain tumor patients

Stefan Bauer; Nicole Porz; Raphael Meier; Alessia Pica; Johannes Slotboom; Roland Wiest; Mauricio Reyes

Medical doctors often do not trust the result of fully automatic segmentations because they have no possibility to make corrections if necessary. On the other hand, manual corrections can introduce a user bias. In this work, we propose to integrate the possibility for quick manual corrections into a fully automatic segmentation method for brain tumor images. This allows for necessary corrections while maintaining a high objectiveness. The underlying idea is similar to the well-known Grab-Cut algorithm, but here we combine decision forest classification with conditional random field regularization for interactive segmentation of 3D medical images. The approach has been evaluated by two different users on the BraTS2012 dataset. Accuracy and robustness improved compared to a fully automatic method and our interactive approach was ranked among the top performing methods. Time for computation including manual interaction was less than 10 minutes per patient, which makes it attractive for clinical use.

Collaboration


Dive into the Raphael Meier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge