Raphaël Rossignol
University of Paris-Sud
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Raphaël Rossignol.
Annales De L Institut Henri Poincare-probabilites Et Statistiques | 2008
Michel Benaïm; Raphaël Rossignol
We provide a new exponential concentration inequality for first passage percolation valid for a wide class of edge times distributions. This improves and extends a result by Benjamini, Kalai and Schramm (Ann. Probab. 31 (2003)) which gave a variance bound for Bernoulli edge times. Our approach is based on some functional inequalities extending the work of Rossignol (Ann. Probab. 35 (2006)), Falik and Samorodnitsky (Combin. Probab. Comput. 16 (2007)). Resume. On obtient une nouvelle inegalite de concentration exponentielle pour la percolation de premier passage, valable pour une large classe de distributions des temps d’aretes. Ceci ameliore et etend un resultat de Benjamini, Kalai et Schramm (Ann. Probab. 31 (2003)) qui donnait une borne sur la variance pour des temps d’aretes suivant une loi de Bernoulli. Notre approche se fonde sur des inegalites fonctionnelles etendant les travaux de Rossignol (Ann. Probab. 35 (2006)), Falik et Samorodnitsky (Combin. Probab. Comput. 16 (2007)). AMS 2000 subject classifications: Primary 60E15; secondary 60K35
Annals of Probability | 2006
Raphaël Rossignol
Threshold phenomena are investigated using a general approach, following Talagrand [Ann. Probab. 22 (1994) 1576-1587] and Friedgut and Kalai [Proc. Amer. Math. Soc. 12 (1999) 1017-10541. The general upper bound for the threshold width of symmetric monotone properties is improved. This follows from a new lower bound on the maximal influence of a variable on a Boolean function. The method of proof is based on a well-known logarithmic Sobolev inequality on {0, 1} n . This new bound is shown to be asymptotically optimal.
Annals of Probability | 2016
Raphaël Rossignol
We investigate the (generalized) Walsh decomposition of point-to-point effective resistances on countable random electric networks with i.i.d. resistances. We show that it is concentrated on low levels, and thus point-to-point effective resistances are uniformly stable to noise. For graphs that satisfy some homogeneity property, we show in addition that it is concentrated on sets of small diameter. As a consequence, we compute the right order of the variance and prove a central limit theorem for the effective resistance through the discrete torus of side length n in Zd, when n goes to infinity.
Annales De L Institut Henri Poincare-probabilites Et Statistiques | 2010
Raphaël Rossignol; Marie Théret
We consider the standard first passage percolation model in
Annals of Probability | 2012
Itai Benjamini; Stéphane Boucheron; Gábor Lugosi; Raphaël Rossignol
\mathbb{Z}^d
Theoretical Informatics and Applications | 2015
Nadia Creignou; Hervé Daudé; Uwe Egly; Raphaël Rossignol
for
Electronic Communications in Probability | 2008
Raphaël Rossignol
d\geq 2
Communications in Mathematical Physics | 2008
Itai Benjamini; Raphaël Rossignol
. We are interested in two quantities, the maximal flow
Electronic Journal of Probability | 2012
Raphaël Rossignol; Leandro P. R. Pimentel
\tau
Stochastic Processes and their Applications | 2010
Raphaël Rossignol; Marie Théret
between the lower half and the upper half of the box, and the maximal flow