Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raphael Sandaltzopoulos is active.

Publication


Featured researches published by Raphael Sandaltzopoulos.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer

Lin Zhang; Stefano Volinia; Tomas Bonome; George A. Calin; Joel Greshock; Nuo Yang; Chang Gong Liu; Antonis Giannakakis; Pangiotis Alexiou; Kosei Hasegawa; Cameron N. Johnstone; Molly Megraw; Sarah Adams; Heini Lassus; Jia Huang; Sippy Kaur; Shun Liang; Praveen Sethupathy; Arto Leminen; Victor A. Simossis; Raphael Sandaltzopoulos; Yoshio Naomoto; Dionyssios Katsaros; Phyllis A. Gimotty; Angela DeMichele; Qihong Huang; Ralf Bützow; Anil K. Rustgi; Barbara L. Weber; Michael J. Birrer

MicroRNAs (miRNAs) are an abundant class of small noncoding RNAs that function as negative gene regulators. miRNA deregulation is involved in the initiation and progression of human cancer; however, the underlying mechanism and its contributions to genome-wide transcriptional changes in cancer are still largely unknown. We studied miRNA deregulation in human epithelial ovarian cancer by integrative genomic approach, including miRNA microarray (n = 106), array-based comparative genomic hybridization (n = 109), cDNA microarray (n = 76), and tissue array (n = 504). miRNA expression is markedly down-regulated in malignant transformation and tumor progression. Genomic copy number loss and epigenetic silencing, respectively, may account for the down-regulation of ≈15% and at least ≈36% of miRNAs in advanced ovarian tumors and miRNA down-regulation contributes to a genome-wide transcriptional deregulation. Last, eight miRNAs located in the chromosome 14 miRNA cluster (Dlk1-Gtl2 domain) were identified as potential tumor suppressor genes. Therefore, our results suggest that miRNAs may offer new biomarkers and therapeutic targets in epithelial ovarian cancer.


Cell | 1999

ATP-Dependent Histone Octamer Sliding Mediated by the Chromatin Remodeling Complex NURF

Ali Hamiche; Raphael Sandaltzopoulos; David Gdula; Carl Wu

Drosophila NURF is an ATP-dependent chromatin remodeling complex that contains ISWI, a member of the SWI2/SNF2 family of ATPases. We demonstrate that NURF catalyzes the bidirectional redistribution of mononucleosomes reconstituted on hsp70 promoter DNA. In the presence of NURF, nucleosomes adopt one predominant position from an ensemble of possible locations within minutes. Movements occur in cis, with no transfer to competing DNA. Migrating intermediates trapped by Exo III digestion reveal progressive nucleosome motion in increments of several base pairs. All four core histones are retained quantitatively during this process, indicating that the general integrity of the histone octamer is maintained. We suggest that NURF remodels nucleosomes by transiently decreasing the activation energy for short-range sliding of the histone octamer.


Cancer Biology & Therapy | 2008

miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer.

Antonis Giannakakis; Raphael Sandaltzopoulos; Joel Greshock; Shun Liang; Jia Huang; Kosei Hasegawa; Chunsheng Li; Ann O'Brien-Jenkins; Dionyssios Katsaros; Barbara L. Weber; Celeste Simon; George Coukos; Lin Zhang

Tumor growth results in hypoxia. Understanding the mechanisms of gene expression reprogramming under hypoxia may provide important clues to cancer pathogenesis. We studied miRNA genes that are regulated by hypoxia in ovarian cancer cell lines by TaqMan miRNA assay containing 157 mature miRNAs. MiR-210 was the most prominent miRNA consistently stimulated under hypoxic conditions. We provide evidence for the involvement of the HIF signaling pathway in miR-210 regulation. Biocomputational analysis and in vitro assays demonstrated that e2f transcription factor 3 (e2f3), a key protein in cell cycle, is regulated by miR-210. E2F3 was further confirmed to be downregulated at the protein level upon induction of miR-210. Importantly, we found remarkably high frequency of miR-210 gene copy deletions in ovarian cancer patients (64%, n=114) and that gene copy number correlates with miR-210 expression levels. Taken together, our results indicate that miR-210 plays a crucial role in tumor onset as a key regulator of the hypoxia response and provide evidence for a link between hypoxia and the regulation of cell cycle.


Molecular Cell | 2001

Dual Functions of Largest NURF Subunit NURF301 in Nucleosome Sliding and Transcription Factor Interactions

Hua Xiao; Raphael Sandaltzopoulos; Hih-Min Wang; Ali Hamiche; Ryan Ranallo; Kyu-Min Lee; Dragony Fu; Carl Wu

NURF is an ISWI complex of four proteins that uses the energy of ATP hydrolysis to catalyze nucleosome sliding. Three NURF components have been identified previously. We have cloned cDNA encoding the largest NURF subunit, revealing a 301 kDa polypeptide (NURF301) that shares structural motifs with ACF1. We have reconstituted full and partial NURF complexes from recombinant proteins and show that NURF301 and the ISWI ATPase are necessary and sufficient for accurate and efficient nucleosome sliding. An HMGA/HMGI(Y)-like domain of NURF301 that facilitates nucleosome sliding indicates the importance of DNA conformational changes in the sliding mechanism. NURF301 also shows interactions with sequence-specific transcription factors, providing a basis for targeted recruitment of the NURF complex to specific genes.


Journal of Clinical Oncology | 2007

Tumor vascular proteins as biomarkers in ovarian cancer.

Ronald J. Buckanovich; Dimitra Sasaroli; Anne O'Brien-Jenkins; Jeffrey Botbyl; Rachel Hammond; Dionysios Katsaros; Raphael Sandaltzopoulos; Lance A. Liotta; Phyllis A. Gimotty; George Coukos

PURPOSE This study aimed to identify novel ovarian cancer biomarkers and potential therapeutic targets through molecular analysis of tumor vascular cells. METHODS Immunohistochemistry-guided laser-capture microdissection and genome-wide transcriptional profiling were used to identify genes that were differentially expressed between vascular cells from human epithelial ovarian cancer and healthy ovaries. Tumor vascular markers (TVMs) were validated through quantitative real-time polymerase chain reaction (qRT-PCR) of immunopurified tumor endothelial cells, in situ hybridization, immunohistochemistry, and Western blot analysis. TVM expression in tumors and noncancerous tissues was assessed by qRT-PCR and was profiled using gene expression data. RESULTS We identified a tumor vascular cell profile of ovarian cancer that was distinct from the vascular profile of normal ovary and other tumors. We validated 12 novel ovarian TVMs. These were expressed by immunopurified tumor endothelial cells and localized to tumor vasculature. Select TVMs were found to be specifically expressed in ovarian cancer and were absent in all normal tissues tested, including female reproductive tissues with physiologic angiogenesis. Many ovarian TVMs were expressed by a variety of other solid tumors. Finally, overexpression of any one of three ovarian TVMs by vascular cells was associated with decreased disease-free interval (all P < .005). CONCLUSION We have identified for the first time the molecular profile of ovarian tumor vasculature. We demonstrate that TVMs may serve as potential biomarkers and molecular targets for ovarian cancer and a variety of other solid tumors.


Cancer Letters | 2008

Reactive oxygen species and HIF-1 signalling in cancer.

Alex Galanis; Aglaia Pappa; Antonis Giannakakis; Evripidis Lanitis; Denarda Dangaj; Raphael Sandaltzopoulos

The heterodimeric transcription factor HIF-1 (hypoxia-inducible factor 1) represents the key mediator of hypoxia response. HIF-1 controls numerous genes of pivotal importance for cellular metabolism, angiogenesis, cell cycle regulation and inhibition of apoptosis. HIF-1 overexpression and enhanced transcriptional activity are linked to tumour initiation and progression. Malfunction of the HIF-1 signalling network has been associated with breast, ovarian and prostate cancers. Elevated reactive oxygen species (ROS), also observed in such tumours, have been implicated in HIF-1 signalling. Deciphering the role of ROS in cancer onset and their involvement in signalling networks should prove invaluable for the design of novel anticancer therapeutics.


Cancer immunology research | 2013

Chimeric Antigen Receptor T Cells with Dissociated Signaling Domains Exhibit Focused Antitumor Activity with Reduced Potential for Toxicity In Vivo

Evripidis Lanitis; Mathilde Poussin; Alex W. Klattenhoff; De-Gang Song; Raphael Sandaltzopoulos; Carl H. June; Daniel J. Powell

To decrease therapy-induced autoimmunity due to on-target toxicity against normal tissues, Lanitis and colleagues developed a trans-signaling CAR-based immunotherapy strategy in which the T-cell activation signal is physically dissociated from the costimulatory signal in two CARs of differing antigen specificity. Their findings show that this dual-specificity, trans-signaling CAR approach can potentiate the therapeutic efficacy of CAR-T cells against cancer while minimizing parallel reactivity against normal tissues bearing single antigen. Adoptive immunotherapy using T lymphocytes genetically modified to express a chimeric antigen receptor (CAR-T) holds considerable promise for the treatment of cancer. However, CAR-based therapies may involve on-target toxicity against normal tissues expressing low amounts of the targeted tumor-associated antigen (TAA). To specify T cells for robust effector function that is selective for tumor but not normal tissue, we developed a trans-signaling CAR strategy, whereby T-cell activation signal 1 (CD3ζ) is physically dissociated from costimulatory signal 2 (CD28) in two CARs of differing antigen specificity: mesothelin and a-folate receptor (FRa). Human T cells were genetically modified to coexpress signal 1 (anti-Meso scFv-CD3ζ) and signal 2 (anti-FRa scFv-CD28) CARs in trans. Trans-signaling CAR-T cells showed weak cytokine secretion against target cells expressing only one TAA in vitro, similar to first-generation CAR-T cells bearing CD3ζ only, but showed enhanced cytokine secretion upon encountering natural or engineered tumor cells coexpressing both antigens, equivalent to that of second-generation CAR-T cells with dual signaling in cis. CAR-T cells with dual specificity also showed potent anticancer activity and persistence in vivo, which was superior to first-generation CAR-T cells and equivalent to second-generation CARs. Importantly, second-generation CAR-T cells exhibited potent activity against cells expressing mesothelin alone, recapitulating normal tissue, whereas trans-signaling CAR-T cells did not. Thus, a dual specificity, trans-signaling CAR approach can potentiate the therapeutic efficacy of CAR-T cells against cancer while minimizing parallel reactivity against normal tissues bearing single antigen. Cancer Immunol Res; 1(1); 43–53. ©2013 AACR.


Nucleic Acids Research | 1998

Prothymosin alpha modulates the interaction of histone H1 with chromatin.

Zoe Karetsou; Raphael Sandaltzopoulos; Maria Frangou-Lazaridis; Chun-Yen Lai; Orestes Tsolas; Peter B. Becker; Thomais Papamarcaki

Prothymosin alpha (ProTalpha) is an abundant acidic nuclear protein that may be involved in cell proliferation. In our search for its cellular partners, we have recently found that ProTalpha binds to linker histone H1. We now provide further evidence for the physiological relevance of this interaction by immunoisolation of a histone H1-ProTalpha complex from NIH 3T3 cell extracts. A detailed analysis of the interaction between the two proteins suggests contacts between the acidic region of ProTalpha and histone H1. In the context of a physiological chromatin reconstitution reaction, the presence of ProTalpha does not affect incorporation of an amount of histone H1 sufficient to increase the nucleosome repeat length by 20 bp, but prevents association of all further H1. Consistent with this finding, a fraction of histone H1 is released when H1-containing chromatin is challenged with ProTalpha. These results imply at least two different interaction modes of H1 with chromatin, which can be distinguished by their sensitivity to ProTalpha. The properties of ProTalpha suggest a role in fine tuning the stoichiometry and/or mode of interaction of H1 with chromatin.


Molecular Therapy | 2012

Redirected antitumor activity of primary human lymphocytes transduced with a fully human anti-mesothelin chimeric receptor.

Evripidis Lanitis; Mathilde Poussin; Ian S. Hagemann; George Coukos; Raphael Sandaltzopoulos; Nathalie Scholler; Daniel J. Powell

Cancer regression by gene-modified T cells bearing a chimeric antigen receptor (CAR) exodomain of mouse origin can be limited by the induction of transgene immunogenicity resulting in poor persistence and function in vivo. The development of functionally-active CAR of human origin can address this issue. Here, we constructed and evaluated fully human anti-mesothelin CARs comprised of a human mesothelin-specific single-chain antibody variable fragment (P4 scFv) coupled to T cell signaling domains. Primary human T cells expressing P4 CAR specifically produced proinflammatory cytokines, degranulated and exerted potent cytolytic functions when cultured with mesothelin-expressing tumors in vitro. P4 CAR T cells also mediated bystander killing of mesothelin-negative cancer cells during coculture. CAR reactivity was not abrogated by soluble tumor-secreted or recombinant mesothelin protein even at supraphysiological levels. Importantly, adoptive transfer of P4 CAR-expressing T cells mediated the regression of large, established tumor in the presence of soluble mesothelin in a xenogenic model of human ovarian cancer. Thus, primary human T cells expressing fully human anti-mesothelin CAR efficiently kill mesothelin-expressing tumors in vitro and in vivo and have the potential to overcome the issue of transgene immunogenicity that may limit CAR T cell trials that utilize scFvs of mouse origin.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2009

Metal-induced carcinogenesis, oxidative stress and hypoxia signalling

Alex Galanis; Athanasios Karapetsas; Raphael Sandaltzopoulos

Heavy metal-induced carcinogenesis is well documented by epidemiological studies. Several diverse mechanisms of cancer induction may be involved, depending on the form of every metal and the tissue that is exposed. Over the recent years, induction of signalling pathways that regulate key cellular responses related to cancer growth and progression by metals has been the focus of many studies. The unravelling of these pathways and the deciphering of their interplay with metals should allow a better understanding of metal toxicity and hopefully will enable development of prophylactic strategies and therapeutic approaches. In this work, we review the mechanisms of carcinogenesis caused by heavy metals emphasizing on the involvement of the hypoxia signalling pathway by metal-induced generation of reactive oxygen species and oxidative stress generation in cancer progression.

Collaboration


Dive into the Raphael Sandaltzopoulos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Athanasios Karapetsas

Democritus University of Thrace

View shared research outputs
Top Co-Authors

Avatar

Evripidis Lanitis

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Antonis Giannakakis

Democritus University of Thrace

View shared research outputs
Top Co-Authors

Avatar

Maria Tokamani

Democritus University of Thrace

View shared research outputs
Top Co-Authors

Avatar

Daniel J. Powell

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Alex Galanis

Democritus University of Thrace

View shared research outputs
Top Co-Authors

Avatar

Denarda Dangaj

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Nathalie Scholler

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Carl Wu

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge