Raphaela Schwentner
Community College of Rhode Island
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Raphaela Schwentner.
Cancer Research | 2008
Jozef Ban; Idriss M. Bennani-Baiti; Max Kauer; Karl-Ludwig Schaefer; Christopher Poremba; Gunhild Jug; Raphaela Schwentner; Oskar W. Smrzka; Karin Muehlbacher; Dave N. T. Aryee; Heinrich Kovar
Although p53 is the most frequently mutated gene in cancer, half of human tumors retain wild-type p53, whereby it is unknown whether normal p53 function is compromised by other cancer-associated alterations. One example is Ewings sarcoma family tumors (ESFT), where 90% express wild-type p53. ESFT are characterized by EWS-FLI1 oncogene fusions. Studying 6 ESFT cell lines, silencing of EWS-FLI1 in a wild-type p53 context resulted in increased p53 and p21(WAF1/CIP1) levels, causing cell cycle arrest. Using a candidate gene approach, HEY1 was linked to p53 induction. HEY1 was rarely expressed in 59 primary tumors, but consistently induced upon EWS-FLI1 knockdown in ESFT cell lines. The NOTCH signaling pathway targets HEY1, and we show NOTCH2 and NOTCH3 to be expressed in ESFT primary tumors and cell lines. Upon EWS-FLI1 silencing, NOTCH3 processing accompanied by nuclear translocation of the activated intracellular domain was observed in all but one p53-mutant cell line. In cell lines with the highest HEY1 induction, NOTCH3 activation was the consequence of JAG1 transcriptional induction. JAG1 modulation by specific siRNA, NOTCH-processing inhibition by either GSI or ectopic NUMB1, and siRNA-mediated HEY1 knockdown all inhibited p53 and p21(WAF1/CIP1) induction. Conversely, forced expression of JAG1, activated NOTCH3, or HEY1 induced p53 and p21(WAF1/CIP1). These results indicate that suppression of EWS-FLI1 reactivates NOTCH signaling in ESFT cells, resulting in p53-dependent cell cycle arrest. Our data link EWS-FLI1 to the NOTCH and p53 pathways and provide a plausible basis both for NOTCH tumor suppressor effects and oncogenesis of cancers that retain wild-type p53.
Oncogene | 2011
Jozef Ban; Gunhild Jug; Pieter Mestdagh; Raphaela Schwentner; Max Kauer; Dave N. T. Aryee; Karl-Ludwig Schaefer; Fumihiko Nakatani; Katia Scotlandi; Marlies Reiter; Dirk Strunk; Frank Speleman; Jo Vandesompele; Heinrich Kovar
EWS-FLI1 is a chromosome translocation-derived chimeric transcription factor that has a central and rate-limiting role in the pathogenesis of Ewings sarcoma. Although the EWS-FLI1 transcriptomic signature has been extensively characterized on the mRNA level, information on its impact on non-coding RNA expression is lacking. We have performed a genome-wide analysis of microRNAs affected by RNAi-mediated silencing of EWS-FLI1 in Ewings sarcoma cell lines, and differentially expressed between primary Ewings sarcoma and mesenchymal progenitor cells. Here, we report on the identification of hsa-mir-145 as the top EWS-FLI1-repressed microRNA. Upon knockdown of EWS-FLI1, hsa-mir-145 expression dramatically increases in all Ewings sarcoma cell lines tested. Vice versa, ectopic expression of the microRNA in Ewings sarcoma cell lines strongly reduced EWS-FLI1 protein, whereas transfection of an anti-mir to hsa-mir-145 increased the EWS-FLI1 levels. Reporter gene assays revealed that this modulation of EWS-FLI1 protein was mediated by the microRNA targeting the FLI1 3′-untranslated region. Mutual regulations of EWS-FLI1 and hsa-mir-145 were mirrored by an inverse correlation between their expression levels in four of the Ewings sarcoma cell lines tested. Consistent with the role of EWS-FLI1 in Ewings sarcoma growth regulation, forced hsa-mir-145 expression halted Ewings sarcoma cell line growth. These results identify feedback regulation between EWS-FLI1 and hsa-mir-145 as an important component of the EWS-FLI1-mediated Ewings sarcomagenesis that may open a new avenue to future microRNA-mediated therapy of this devastating malignant disease.
Blood | 2012
Caroline Hutter; Max Kauer; Ingrid Simonitsch-Klupp; Gunhild Jug; Raphaela Schwentner; Judith Leitner; Peter Bock; Peter Steinberger; Wolfgang Bauer; Nadia Carlesso; Milen Minkov; Helmut Gadner; Georg Stingl; Heinrich Kovar; Ernst Kriehuber
Langerhans cell histiocytosis (LCH) is an enigmatic disease defined by the accumulation of Langerhans cell-like dendritic cells (DCs). In the present study, we demonstrate that LCH cells exhibit a unique transcription profile that separates them not only from plasmacytoid and myeloid DCs, but also from epidermal Langerhans cells, indicating a distinct DC entity. Molecular analysis revealed that isolated and tissue-bound LCH cells selectively express the Notch ligand Jagged 2 (JAG2) and are the only DCs that express both Notch ligand and its receptor. We further show that JAG2 signaling induces key LCH-cell markers in monocyte-derived DCs, suggesting a functional role of Notch signaling in LCH ontogenesis. JAG2 also induced matrix-metalloproteinases 1 and 12, which are highly expressed in LCH and may account for tissue destruction in LCH lesions. This induction was selective for DCs and was not recapitulated in monocytes. The results of the present study suggest that JAG2-mediated Notch activation confers phenotypic and functional aspects of LCH to DCs; therefore, interference with Notch signaling may be an attractive strategy to combat this disease.
Genome Research | 2013
Sven Bilke; Raphaela Schwentner; Fan Yang; Maximilian Kauer; Gunhild Jug; Robert L. Walker; Sean Davis; Yuelin J. Zhu; Marbin Pineda; Paul S. Meltzer; Heinrich Kovar
Deregulated E2F transcription factor activity occurs in the vast majority of human tumors and has been solidly implicated in disturbances of cell cycle control, proliferation, and apoptosis. Aberrant E2F regulatory activity is often caused by impairment of control through pRB function, but little is known about the interplay of other oncoproteins with E2F. Here we show that ETS transcription factor fusions resulting from disease driving rearrangements in Ewing sarcoma (ES) and prostate cancer (PC) are one such class of oncoproteins. We performed an integrative study of genome-wide DNA-binding and transcription data in EWSR1/FLI1 expressing ES and TMPRSS2/ERG containing PC cells. Supported by promoter activity and mutation analyses, we demonstrate that a large fraction of E2F3 target genes are synergistically coregulated by these aberrant ETS proteins. We propose that the oncogenic effect of ETS fusion oncoproteins is in part mediated by the disruptive effect of the E2F-ETS interaction on cell cycle control. Additionally, a detailed analysis of the regulatory targets of the characteristic EWSR1/FLI1 fusion in ES identifies two functionally distinct gene sets. While synergistic regulation in concert with E2F in the promoter of target genes has a generally activating effect, EWSR1/FLI1 binding independent of E2F3 is predominantly associated with repressed differentiation genes. Thus, EWSR1/FLI1 appears to promote oncogenesis by simultaneously promoting cell proliferation and perturbing differentiation.
Cancer Research | 2010
Dave N. T. Aryee; Stephan Niedan; Maximilian Kauer; Raphaela Schwentner; Idriss M. Bennani-Baiti; Jozef Ban; Karin Muehlbacher; Michael Kreppel; Robert L. Walker; Paul S. Meltzer; Christopher Poremba; Reinhard Kofler; Heinrich Kovar
Hypoxia is an important condition in the tumor cell microenvironment and approximately 1% to 1.5% of the genome is transcriptionally responsive to hypoxia with hypoxia-inducible factor-1 (HIF-1) as a major mediator of transcriptional activation. Tumor hypoxia is associated with a more aggressive phenotype of many cancers in adults, but data on pediatric tumors are scarce. Because, by immunohistochemistry, HIF-1alpha expression was readily detectable in 18 of 28 primary Ewings sarcoma family tumors (ESFT), a group of highly malignant bone-associated tumors in children and young adults, we studied the effect of hypoxia on ESFT cell lines in vitro. Intriguingly, we found that EWS-FLI1 protein expression, which characterizes ESFT, is upregulated by hypoxia in a HIF-1alpha-dependent manner. Hypoxia modulated the EWS-FLI1 transcriptional signature relative to normoxic conditions. Both synergistic as well as antagonistic transcriptional effects of EWS-FLI1 and of hypoxia were observed. Consistent with alterations in the expression of metastasis-related genes, hypoxia stimulated the invasiveness and soft agar colony formation of ESFT cells in vitro. Our data represent the first transcriptome analysis of hypoxic ESFT cells and identify hypoxia as an important microenvironmental factor modulating EWS-FLI1 expression and target gene activity with far-reaching consequences for the malignant properties of ESFT.
Cancer Research | 2014
Jozef Ban; Dave N. T. Aryee; Argyro Fourtouna; Wietske van der Ent; Max Kauer; Stephan Niedan; Isidro Machado; Carlos Rodriguez-Galindo; Oscar M. Tirado; Raphaela Schwentner; Piero Picci; Adrienne M. Flanagan; Verena Berg; Sandra J. Strauss; Katia Scotlandi; Elizabeth R. Lawlor; Ewa Snaar-Jagalska; Antonio Llombart-Bosch; Heinrich Kovar
The developmental receptor NOTCH plays an important role in various human cancers as a consequence of oncogenic mutations. Here we describe a novel mechanism of NOTCH-induced tumor suppression involving modulation of the deacetylase SIRT1, providing a rationale for the use of SIRT1 inhibitors to treat cancers where this mechanism is inactivated because of SIRT1 overexpression. In Ewing sarcoma cells, NOTCH signaling is abrogated by the driver oncogene EWS-FLI1. Restoration of NOTCH signaling caused growth arrest due to activation of the NOTCH effector HEY1, directly suppressing SIRT1 and thereby activating p53. This mechanism of tumor suppression was validated in Ewing sarcoma cells, B-cell tumors, and human keratinocytes where NOTCH dysregulation has been implicated pathogenically. Notably, the SIRT1/2 inhibitor Tenovin-6 killed Ewing sarcoma cells in vitro and prohibited tumor growth and spread in an established xenograft model in zebrafish. Using immunohistochemistry to analyze primary tissue specimens, we found that high SIRT1 expression was associated with Ewing sarcoma metastasis and poor prognosis. Our findings suggest a mechanistic rationale for the use of SIRT1 inhibitors being developed to treat metastatic disease in patients with Ewing sarcoma.
Frontiers in Oncology | 2012
Heinrich Kovar; Javier Alonso; Pierre Åman; Dave N. T. Aryee; Jozef Ban; Sue Burchill; Stefan Burdach; Enrique de Alava; Olivier Delattre; Uta Dirksen; Argyro Fourtouna; Simone Fulda; Lee J. Helman; David Herrero-Martín; Pancras C. Pancras; Udo Kontny; Elizabeth R. Lawlor; Stephen L. Lessnick; Antonio Llombart-Bosch; Markus Metzler; Richard Moriggl; Stephan Niedan; Jenny Potratz; Françoise Rédini; Günther H. Günther; Lucia T. Riedmann; Claudia Rossig; Beat W. Schäfer; Raphaela Schwentner; Katia Scotlandi
The European Network for Cancer Research in Children and Adolescents (ENCCA) provides an interaction platform for stakeholders in research and care of children with cancer. Among ENCCA objectives is the establishment of biology-based prioritization mechanisms for the selection of innovative targets, drugs, and prognostic markers for validation in clinical trials. Specifically for sarcomas, there is a burning need for novel treatment options, since current chemotherapeutic treatment protocols have met their limits. This is most obvious for metastatic Ewing sarcoma (ES), where long term survival rates are still below 20%. Despite significant progress in our understanding of ES biology, clinical translation of promising laboratory results has not yet taken place due to fragmentation of research and lack of an institutionalized discussion forum. To fill this gap, ENCCA assembled 30 European expert scientists and five North American opinion leaders in December 2011 to exchange thoughts and discuss the state of the art in ES research and latest results from the bench, and to propose biological studies and novel promising therapeutics for the upcoming European EWING2008 and EWING2012 clinical trials.
British Journal of Cancer | 2013
Dave N. T. Aryee; Stephan Niedan; Jozef Ban; Raphaela Schwentner; Karin Muehlbacher; Maximilian Kauer; Reinhard Kofler; Heinrich Kovar
Background:Though p53 mutations are rare in ES, there is a strong indication that p53 mutant tumours form a particularly bad prognostic group. As such, novel treatment strategies are warranted that would specifically target and eradicate tumour cells containing mutant p53 in this subset of ES patients.Methods:PRIMA-1Met, also known as APR-246, is a small organic molecule that has been shown to restore tumour-suppressor function primarily to mutant p53 and also to induce cell death in various cancer types. In this study, we interrogated the ability of APR-246 to induce apoptosis and inhibit tumour growth in ES cells with different p53 mutations.Results:APR-246 variably induced apoptosis, associated with Noxa, Puma or p21WAF1 upregulation, in both mutant and wild-type p53 harbouring cells. The apoptosis-inducing capability of APR-246 was markedly reduced in ES cell lines transfected with p53 siRNA. Three ES cell lines established from the same patient at different stages of the disease and two cell lines of different patients with identical p53 mutations all exhibited different sensitivities to APR-246, indicating cellular context dependency. Comparative transcriptome analysis on the three cell lines established from the same patient identified differential expression levels of several TP53 and apoptosis-associated genes such as APOL6, PENK, PCDH7 and MST4 in the APR-246-sensitive cell line relative to the less APR-246-sensitive cell lines.Conclusion:This is the first study reporting the biological response of Ewing sarcoma cells to APR-246 exposure and shows gross variability in responses. Our study also proposes candidate genes whose expression might be associated with ES cells’ sensitivity to APR-246. With APR-246 currently in early-phase clinical trials, our findings call for caution in considering it as a potential adjuvant to conventional ES-specific chemotherapeutics.
Nucleic Acids Research | 2015
Raphaela Schwentner; Theodore Papamarkou; Maximilian Kauer; Vassilios Stathopoulos; Fan Yang; Sven Bilke; Paul S. Meltzer; Mark A. Girolami; Heinrich Kovar
Cell cycle progression is orchestrated by E2F factors. We previously reported that in ETS-driven cancers of the bone and prostate, activating E2F3 cooperates with ETS on target promoters. The mechanism of target co-regulation remained unknown. Using RNAi and time-resolved chromatin-immunoprecipitation in Ewing sarcoma we report replacement of E2F3/pRB by constitutively expressed repressive E2F4/p130 complexes on target genes upon EWS-FLI1 modulation. Using mathematical modeling we interrogated four alternative explanatory models for the observed EWS-FLI1/E2F3 cooperation based on longitudinal E2F target and regulating transcription factor expression analysis. Bayesian model selection revealed the formation of a synergistic complex between EWS-FLI1 and E2F3 as the by far most likely mechanism explaining the observed kinetics of E2F target induction. Consequently we propose that aberrant cell cycle activation in Ewing sarcoma is due to the de-repression of E2F targets as a consequence of transcriptional induction and physical recruitment of E2F3 by EWS-FLI1 replacing E2F4 on their target promoters.
RNA Biology | 2010
Lucia T. Riedmann; Raphaela Schwentner
Since the discovery of the first microRNA (miRNA) family member lin-4 in Caenorhabditis elegans by Lee et al., and RNA interference (RNAi) by Andrew Fire and his colleagues in the 1990s, the new field of regulatory non-coding RNAs has enormously gained momentum and importance. Small regulatory RNAs comprise small interfering RNAs (siRNAs), miRNAs and Piwi-associated small RNAs (piRNAs). Generated from double-stranded RNAs (dsRNAs), siRNAs trigger sequence-specific mRNA decay also known as RNA interference (RNAi). miRNAs in association with Argonaute (AGO) and GW182 proteins, forming the RNA-induced silencing complex (RISC), mediate fine tuning of gene expression and are involved in various biological key processes. An estimate of 500-1000 miRNA genes exist in vertebrates and plants and about 100 in invertebrates. Each miRNA is predicted to target hundreds of mRNAs thus influencing key regulatory mechanisms of the cell. Consequently, deregulated miRNA expression has been suggested to contribute to the initiation and progression of human cancer and other diseases. piRNAs associated with Piwi proteins protect the animal germline from mobile genetic elements, thereby acting as a small RNA based immune system.