Raphaëlle Chaix
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Raphaëlle Chaix.
American Journal of Human Genetics | 2004
Lluis Quintana-Murci; Raphaëlle Chaix; R. Spencer Wells; Doron M. Behar; Hamid Sayar; Rosaria Scozzari; Chiara Rengo; Nadia Al-Zahery; Ornella Semino; A. Silvana Santachiara-Benerecetti; Alfredo Coppa; Qasim Ayub; Aisha Mohyuddin; Chris Tyler-Smith; S. Qasim Mehdi; Antonio Torroni; Ken McElreavey
The southwestern and Central Asian corridor has played a pivotal role in the history of humankind, witnessing numerous waves of migration of different peoples at different times. To evaluate the effects of these population movements on the current genetic landscape of the Iranian plateau, the Indus Valley, and Central Asia, we have analyzed 910 mitochondrial DNAs (mtDNAs) from 23 populations of the region. This study has allowed a refinement of the phylogenetic relationships of some lineages and the identification of new haplogroups in the southwestern and Central Asian mtDNA tree. Both lineage geographical distribution and spatial analysis of molecular variance showed that populations located west of the Indus Valley mainly harbor mtDNAs of western Eurasian origin, whereas those inhabiting the Indo-Gangetic region and Central Asia present substantial proportions of lineages that can be allocated to three different genetic components of western Eurasian, eastern Eurasian, and south Asian origin. In addition to the overall composite picture of lineage clusters of different origin, we observed a number of deep-rooting lineages, whose relative clustering and coalescent ages suggest an autochthonous origin in the southwestern Asian corridor during the Pleistocene. The comparison with Y-chromosome data revealed a highly complex genetic and demographic history of the region, which includes sexually asymmetrical mating patterns, founder effects, and female-specific traces of the East African slave trade.
PLOS Genetics | 2005
Gil McVean; Chris C. A. Spencer; Raphaëlle Chaix
ABSTRACT The completion of the International HapMap Project marks the start of a new phase in human genetics. The aim of the project was to provide a resource that facilitates the design of efficient genome-wide association studies, through characterising patterns of genetic variation and linkage disequilibrium in a sample of 270 individuals across four geographical populations. In total, over one million SNPs have been typed across these genomes, providing an unprecedented view of human genetic diversity. In this review we focus on what the HapMap project has taught us about the structure of human genetic variation and the fundamental molecular and evolutionary processes that shape it.
PLOS Genetics | 2008
Raphaëlle Chaix; Chen Cao; Peter Donnelly
In several species, including rodents and fish, it has been shown that the Major Histocompatibility Complex (MHC) influences mating preferences and, in some cases, that this may be mediated by preferences based on body odour. In humans, the picture has been less clear. Several studies have reported a tendency for humans to prefer MHC-dissimilar mates, a sexual selection that would favour the production of MHC-heterozygous offspring, who would be more resistant to pathogens, but these results are unsupported by other studies. Here, we report analyses of genome-wide genotype data (from the HapMap II dataset) and HLA types in African and European American couples to test whether humans tend to choose MHC-dissimilar mates. In order to distinguish MHC-specific effects from genome-wide effects, the pattern of similarity in the MHC region is compared to the pattern in the rest of the genome. African spouses show no significant pattern of similarity/dissimilarity across the MHC region (relatedness coefficient, R = 0.015, p = 0.23), whereas across the genome, they are more similar than random pairs of individuals (genome-wide R = 0.00185, p<10−3). We discuss several explanations for these observations, including demographic effects. On the other hand, the sampled European American couples are significantly more MHC-dissimilar than random pairs of individuals (R = −0.043, p = 0.015), and this pattern of dissimilarity is extreme when compared to the rest of the genome, both globally (genome-wide R = −0.00016, p = 0.739) and when broken into windows having the same length and recombination rate as the MHC (only nine genomic regions exhibit a higher level of genetic dissimilarity between spouses than does the MHC). This study thus supports the hypothesis that the MHC influences mate choice in some human populations.
Current Biology | 2007
Raphaëlle Chaix; Lluis Quintana-Murci; Tatyana Hegay; Michael F. Hammer; Zahra Mobasher; Frédéric Austerlitz; Evelyne Heyer
Pastoral and farmer populations, who have coexisted in Central Asia since the fourth millennium B.C., present not only different lifestyles and means of subsistence but also various types of social organization. Pastoral populations are organized into so-called descent groups (tribes, clans, and lineages) and practice exogamous marriages (a man chooses a bride in a different lineage or clan). In Central Asia, these descent groups are patrilineal: The children are systematically affiliated with the descent groups of the father. By contrast, farmer populations are organized into families (extended or nuclear) and often establish endogamous marriages with cousins. This study aims at better understanding the impact of these differences in lifestyle and social organization on the shaping of genetic diversity. We show that pastoral populations exhibit a substantial loss of Y chromosome diversity in comparison to farmers but that no such a difference is observed at the mitochondrial-DNA level. Our analyses indicate that the dynamics of patrilineal descent groups, which implies different male and female sociodemographic histories, is responsible for these sexually-asymmetric genetic patterns. This molecular signature of the pastoral social organization disappears over a few centuries only after conversion to an agricultural way of life.
Molecular Ecology | 2012
Evelyne Heyer; Raphaëlle Chaix; Samuel Pavard; Frédéric Austerlitz
In the human species, the two uniparental genetic systems (mitochondrial DNA and Y chromosome) exhibit contrasting diversity patterns. It has been proposed that sex‐specific behaviours, and in particular differences in migration rate between men and women, may explain these differences. The availability of high‐density genomic data and the comparison of genetic patterns on autosomal and sex chromosomes at global and local scales allow a reassessment of the extent to which sex‐specific behaviours shape our genome. In this article, we first review studies comparing the genetic patterns at uniparental and biparental genetic systems and assess the extent to which sex‐specific migration processes explain the differences between these genetic systems. We show that differences between male and female migration rates matter, but that they are certainly not the only contributing factor. In particular, differences in effective population size between men and women are also likely to account for these differences. Then, we present and discuss three anthropological processes that may explain sex‐specific differences in effective population size and thus human genomic variation: (i) variance in reproductive success arising from, for example, polygyny; (ii) descent rules; and (iii) transmission of reproductive success.
BMC Genetics | 2009
Evelyne Heyer; Patricia Balaresque; Mark A. Jobling; Lluis Quintana-Murci; Raphaëlle Chaix; Laure Ségurel; Almaz Aldashev; Tanya Hegay
BackgroundIn this study, we used genetic data that we collected in Central Asia, in addition to data from the literature, to understand better the origins of Central Asian groups at a fine-grained scale, and to assess how ethnicity influences the shaping of genetic differences in the human species. We assess the levels of genetic differentiation between ethnic groups on one hand and between populations of the same ethnic group on the other hand with mitochondrial and Y-chromosomal data from several populations per ethnic group from the two major linguistic groups in Central Asia.ResultsOur results show that there are more differences between populations of the same ethnic group than between ethnic groups for the Y chromosome, whereas the opposite is observed for mtDNA in the Turkic group. This is not the case for Tajik populations belonging to the Indo-Iranian group where the mtDNA like the Y-chomosomal differentiation is also significant between populations within this ethnic group. Further, the Y-chromosomal analysis of genetic differentiation between populations belonging to the same ethnic group gives some estimation of the minimal age of these ethnic groups. This value is significantly higher than what is known from historical records for two of the groups and lends support to Barths hypothesis by indicating that ethnicity, at least for these two groups, should be seen as a constructed social system maintaining genetic boundaries with other ethnic groups, rather than the outcome of common genetic ancestryConclusionOur analysis of uniparental markers highlights in Central Asia the differences between Turkic and Indo-Iranian populations in their sex-specific differentiation and shows good congruence with anthropological data.
Molecular Biology and Evolution | 2013
Carla Aimé; Guillaume Laval; Etienne Patin; Paul Verdu; Laure Ségurel; Raphaëlle Chaix; Tatyana Hegay; Lluis Quintana-Murci; Evelyne Heyer; Frédéric Austerlitz
Demographic changes are known to leave footprints on genetic polymorphism. Together with the increased availability of large polymorphism data sets, coalescent-based methods allow inferring the past demography of populations from their present-day patterns of genetic diversity. Here, we analyzed both nuclear (20 noncoding regions) and mitochondrial (HVS-I) resequencing data to infer the demographic history of 66 African and Eurasian human populations presenting contrasting lifestyles (nomadic hunter-gatherers, nomadic herders, and sedentary farmers). This allowed us to investigate the relationship between lifestyle and demography and to address the long-standing debate about the chronology of demographic expansions and the Neolithic transition. In Africa, we inferred expansion events for farmers, but constant population sizes or contraction events for hunter-gatherers. In Eurasia, we inferred higher expansion rates for farmers than herders with HVS-I data, except in Central Asia and Korea. Although isolation and admixture processes could have impacted our demographic inferences, these processes alone seem unlikely to explain the contrasted demographic histories inferred in populations with different lifestyles. The small expansion rates or constant population sizes inferred for herders and hunter-gatherers may thus result from constraints linked to nomadism. However, autosomal data revealed contraction events for two sedentary populations in Eurasia, which may be caused by founder effects. Finally, the inferred expansions likely predated the emergence of agriculture and herding. This suggests that human populations could have started to expand in Paleolithic times, and that strong Paleolithic expansions in some populations may have ultimately favored their shift toward agriculture during the Neolithic.
American Journal of Physical Anthropology | 2008
Raphaëlle Chaix; Frédéric Austerlitz; Tatyana Hegay; Lluis Quintana-Murci; Evelyne Heyer
In this study, we describe the landscape of human demographic expansions in Eurasia using a large continental Y chromosome and mitochondrial DNA dataset. Variation at these two uniparentally-inherited genetic systems retraces expansions that occurred in the past 60 ky, and shows a clear decrease of expansion ages from east to west Eurasia. To investigate the demographic events at the origin of this westward decrease of expansion ages, the estimated divergence ages between Eurasian populations are compared with the estimated expansion ages within each population. Both markers suggest that the demographic expansion diffused from east to west in Eurasia in a demic way, i.e., through migrations of individuals (and not just through diffusion of new technologies), highlighting the prominent role of eastern regions within Eurasia during Palaeolithic times.
European Journal of Human Genetics | 2004
Raphaëlle Chaix; Frédéric Austerlitz; Bharti Morar; Luba Kalaydjieva; Evelyne Heyer
Three coalescent-based methods allowed us to infer some aspects of the history of three Bulgarian Gypsies populations belonging to the Vlax linguistic group: the Lom, Rudari and Kalderas. We used several kinds of genetic markers: HV1 sequences of the maternally inherited mitochondrial genome and microsatellites of the paternally inherited Y chromosome and of the biparentally inherited chromosome 8. This allowed us to infer several parameters for men and women: the splitting order of the populations and the ages of the splitting events, the growth rate in each population and the migration rates between populations. Altogether, they enabled us to infer a demographic scenario that could explain the genetic diversity of Vlax Roma: recent splits occurring after the arrival in Europe, asymmetric migration flows especially for males and unequal growth rates. This represents a considerable contribution to the Vlax Roma history in comparison with the inferences from classical population genetics.
Molecular Ecology | 2012
Romain Laurent; Bruno Toupance; Raphaëlle Chaix
Little is known about the genetic factors influencing mate choice in humans. Still, there is evidence for non‐random mate choice with respect to physical traits. In addition, some studies suggest that the Major Histocompatibility Complex may affect pair formation. Nowadays, the availability of high density genomic data sets gives the opportunity to scan the genome for signatures of non‐random mate choice without prior assumptions on which genes may be involved, while taking into account socio‐demographic factors. Here, we performed a genome scan to detect extreme patterns of similarity or dissimilarity among spouses throughout the genome in three populations of African, European American, and Mexican origins from the HapMap 3 database. Our analyses identified genes and biological functions that may affect pair formation in humans, including genes involved in skin appearance, morphogenesis, immunity and behaviour. We found little overlap between the three populations, suggesting that the biological functions potentially influencing mate choice are population specific, in other words are culturally driven. Moreover, whenever the same functional category of genes showed a significant signal in two populations, different genes were actually involved, which suggests the possibility of evolutionary convergences.